首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Reactions of (Et4N)[Tp*WS3] [Tp* is hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate] with CuSCN in MeCN in the presence of melamine afforded the title neutral dimeric cluster [Cu4W2(C15H22BN6)2(NCS)2S6(C2H3N)2] or [Tp*W(μ2‐S)23‐S)Cu(μ2‐SCN)(CuMeCN)]2, which has two butterfly‐shaped [Tp*WS3Cu2] cores bridged across a centre of inversion by two (CuSCN) anions. The S atoms of the bridging thiocyanate ligands interact with the H atoms of the methyl groups of the Tp* units of a neighbouring dimer to form a C—H...S hydrogen‐bonded chain. The N atoms of the thiocyanate anions interact with the H atoms of the methyl groups of the Tp* units of neighbouring chains, affording a two‐dimensional hydrogen‐bonded network.  相似文献   

2.
The title compound, [Mn3Fe6(C5H5)6(C6H4O2)6(C10H8N2)(H2O)2]n, consists of two crystallographically unique MnII centers. One is situated on an inversion center and is octa­hedrally coordinated by two N atoms from two bridging 4,4′‐bipyridine (4,4′‐bipy) ligands and four O atoms, two from different bridging ferrocenecarboxyl­ate (μ2‐FcCOO; Fc is ferrocene) units and two from aqua ligands. The two halves of each 4,4′‐bipy ligand are related by a center of symmetry. The second MnII center is in a strongly distorted tetra­gonal–pyramidal geometry, coordinated by five O atoms, three from three μ2‐FcCOO units and two from a fourth, chelating, η2‐FcCOO unit. The FcCOO units function as bridging ligands to adjacent MnII centers, leading to the formation of linear ⋯Mn1Mn2Mn2Mn1⋯ chains. Adjacent chains are further bridged by 4,4′‐bipy ligands, resulting in a two‐dimensional layered polymer.  相似文献   

3.
The CuI cations in the title compound, [Cu(NCS)(C6H6N2O)2]n, are coordinated by N atoms from each of two mirror‐related nicotin­amide ligands, as well as by one N atom of one thio­cyanate ligand and one S atom of a symmetry‐related thio­cyanate ligand, within a slightly distorted tetrahedron. The CuI cations and the thio­cyanate anions are located on a crystallographic mirror plane and the nicotin­amide ligands occupy general positions. The CuI cations are connected by the thio­cyanate anions to form chains in the direction of the crystallographic a axis. These chains are connected by hydrogen bonds between the amide H atoms and the O atoms of adjacent nicotin­amide ligands, to give a three‐dimensional structure.  相似文献   

4.
The title compound, [Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]n, contains two crystallographically unique CuII centres, each lying on a twofold axis and having a slightly distorted octahedral environment. One CuII centre is coordinated by two bridging 4,4′‐bipyridine (4,4′‐bipy) ligands, two sulfate anions and two aqua ligands. The second is surrounded by two 4,4′‐bipy N atoms and four O atoms, two from bridging sulfate anions and two from ethane‐1,2‐diol ligands. The sulfate anion bridges adjacent CuII centres, leading to the formation of linear ...Cu1–Cu2–Cu1–Cu2... chains. Adjacent chains are further bridged by 4,4′‐bipy ligands, which are also located on the twofold axis, resulting in a two‐dimensional layered polymer. In the crystal structure, extensive O—H...O hydrogen‐bonding interactions between water molecules, ethane‐1,2‐diol molecules and sulfate anions lead to the formation of a three‐dimensional supramolecular network structure.  相似文献   

5.
The solution reaction of AgNO3 and 2‐aminopyrazine (apyz) in a 1:1 ratio gives rise to the title compound, [Ag2(NO3)2(C4H5N3)2]n, (I), which possesses a chiral crystal structure. In (I), both of the crystallographically independent AgI cations are coordinated in tetrahedral geometries by two N atoms from two apyz ligands and two O atoms from nitrate anions; however, the AgI centers show two different coordination environments in which one is coordinated by two O atoms from two different symmetry‐related nitrate anions and the second is coordinated by two O atoms from a single nitrate anion. The crystal structure consists of one‐dimensional AgI–apyz chains, which are further extended by μ2‐κ2O:O nitrate anions into a two‐dimensional (4,4) sheet. N—H...O and Capyz—H...O hydrogen bonds connect neighboring sheets to form a three‐dimensional supramolecular framework.  相似文献   

6.
2‐Aminopyrimidine (L1) and 2‐amino‐4,6‐dimethylpyrimidine (L2) have been used to create the two novel title complexes, [Ag2(NCS)2(C4H5N3)]n, (I), and [Ag(NCS)(C6H9N3)]n, (II). The structures of complexes (I) and (II) are mainly directed by the steric properties of the ligands. In (I), the L1 ligand is bisected by a twofold rotation axis running through the amine N atom and opposite C atoms of the pyrimidine ring. The thiocyanate anion adopts the rare μ3‐κ3S coordination mode to link three tetrahedrally coordinated AgI ions into a two‐dimensional honeycomb‐like 63 net. The L1 ligands further extend the two‐dimensional sheet to form a three‐dimensional framework by bridging AgI ions in adjacent layers. In (II), with three formula units in the asymmetric unit, the L2 ligand bonds to a single AgI ion in a monodentate fashion, while the thiocyanate anions adopt a μ3‐κ1N2S coordination mode to link the AgL2 subunits to form two‐dimensional sheets. These layers are linked by N—H...N hydrogen bonds between the noncoordinated amino H atoms and both thiocyanate and pyrimidine N atoms.  相似文献   

7.
The title novel heterometallic 3d–4f coordination polymer, {[CuEr2(C5HN2O4)2(C2O4)(H2O)6]·3H2O}n, has a three‐dimensional metal–organic framework composed of two types of metal atoms (one CuII and two ErIII) and two types of bridging anionic ligands [3,5‐dicarboxylatopyrazolate(3−) (ptc3−) and oxalate]. The CuII atom is four‐coordinated in a square geometry. The ErIII atoms are both eight‐coordinated, but the geometries at the two atoms appear different, viz. triangular dodecahedral and bicapped trigonal prismatic. One of the oxalate anions is located on a twofold axis and the other lies about an inversion centre. Both oxalate anions act as bis‐bidentate ligands bridging the latter type of Er atoms in parallel zigzag chains. The pdc3− anions act as quinquedentate ligands not only chelating the CuII and the triangular dodecahedral ErIII centres in a bis‐bidentate bridging mode, but also connecting to ErIII centres of both types in a monodentate bridging mode. Thus, a three‐dimensional metal–organic framework is generated, and hydrogen bonds link the metal–organic framework with the uncoordinated water molecules. This study describes the first example of a three‐dimensional 3d–4f coordination polymer based on pyrazole‐3,5‐dicarboxylate and oxalate, and therefore demonstrates further the usefulness of pyrazoledicarboxylate as a versatile multidentate ligand for constructing heterometallic 3d–4f coordination polymers with interesting architectures.  相似文献   

8.
In the title coordination polymer, [Pb(NCS)2(C12H12N2)], the coordination geometry about the PbII atom is a distorted octahedron, composed of two N atoms from bpe ligands [bpe is 1,2‐bis(4‐pyridyl)ethane], two other N atoms from NCS? groups and two neighbouring S atoms through short contacts. The trans‐bpe ligands act as bridges between two PbII centres resulting in the formation of a linear chain. The terminal S atoms of the NCS? ligands make short contacts with the PbII atom of neighbouring chains to form an infinite two‐dimensional polymeric structure.  相似文献   

9.
The asymmetric unit of the title compound, [Cd(C8H4O4)(C17H8ClN5)(H2O)]n, contains one CdII atom, two half benzene‐1,4‐dicarboxylate (1,4‐bdc) anions, one 11‐chloropyrido[2′,3′:2,3]pyrimidino[5,6‐f][1,10]phenanthroline (L) ligand and one coordination water molecule. The 1,4‐bdc ligands are on inversion centers at the centroids of the arene rings. The CdII atom is six‐coordinated by two N atoms from one L ligand, three carboxylate O atoms from two different 1,4‐bdc ligands and one water O atom in a distorted octahedral coordination sphere. Each CdII center is bridged by the 1,4‐bdc dianions to give a one‐dimensional chain. π–π stacking interactions between L ligands of neighboring chains extend adjacent chains into a two‐dimensional supramolecular (6,3) network. Neighboring (6,3) networks are interpenetrated in an unusual inclined mode, resulting in a three‐dimensional framework. Additionally, the water–carboxylate O—H...O hydrogen bonds observed in the network consolidate the interpenetrating nets.  相似文献   

10.
The asymmetric unit of the title compound, {[Cu(C4O4)(C6H6N2O)2(H2O)2]·2H2O}n, consists of one pyridine‐4‐carbox­amide (isonicotinamide or ina) ligand, one‐half of a squarate dianion, a coordinated aqua ligand and a solvent water mol­ecule. Both the CuII and the squarate ions are located on inversion centers. The CuII ions are octa­hedrally surrounded by four O atoms of two water mol­ecules and two squarate anions, and by two N atoms of the isonicotinamide ligands. The crystal structure contains chains of squarate‐1,3‐bridged CuII ions. These chains are held together by N—H⋯O and O—H⋯O inter­molecular hydrogen‐bond inter­actions, forming an extensive three‐dimensional network.  相似文献   

11.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

12.
In the title compound, [Mn(C8H7O2)2(C12H9N3)], the manganese(II) centre is surrounded by three bidentate chelating ligands, namely, one 2‐(2‐pyridyl)benzimidazole ligand [Mn—N = 2.1954 (13) and 2.2595 (14) Å] and two p‐toluate ligands [Mn—O = 2.1559 (13)–2.2748 (14) Å]. It displays a severely distorted octahedral geometry, with cis angles ranging from 58.87 (4) to 106.49 (5)°. Intermolecular C—H...O hydrogen bonds between the p‐toluate ligands link the molecules into infinite chains, and every two neighbouring chains are further coupled by N—H...O and C—H...O hydrogen bonds between the 2‐(2‐pyridyl)benzimidazole and p‐toluate ligands, leading to an infinite ribbon‐like double‐chain packing mode. The complete solid‐state structure can be described as a three‐dimensional supramolecular framework, stabilized by these intermolecular hydrogen‐bonding interactions and possible C—H...π interactions, as well as stacking interactions involving the 2‐(2‐pyridyl)benzimidazole ligands.  相似文献   

13.
In the title neutral coordination polymer, [Cd(C6H3ClNO2)2(H2O)2]n, each CdII ion is coordinated by one N and four O atoms from three 2‐chloro­nicotinate ligands and by two aqua ligands, defining a distorted monocapped octahedral coordination geometry. Adjacent Cd atoms are linked by the pyridyl N atom and the bidentate carboxyl­ate functional group of a 2‐­chloro­nicotinate ligand, forming a one‐dimensional infinite chain along the b axis. The Cd⋯Cd distance is 8.112 (3) Å. These chains are linked by O—H⋯O and O—H⋯N hydrogen bonds into a three‐dimensional network structure.  相似文献   

14.
In the title compound, [La2(C8H4O4)2(C6H4NO2)2]n, there are two crystallographically independent La centres, both nine‐coordinated in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom. The La centres are linked by the carboxylate groups of isonicotinate (IN) and benzene‐1,2‐dicarboxylate (BDC2−) ligands to form La–carboxylate chains, which are further expanded into a three‐dimensional framework with nanometre‐sized channels by La—N bonds. In the construction of the resultant architecture, in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom, while the BDC ligands link to four different cations each, displaying penta‐ and heptadentate chelating–bridging modes, respectively.  相似文献   

15.
In the title coordination polymer, {[Cd(C6H8O4S)(C13H14N2)]·H2O}n, the CdII atom displays a distorted octahedral coordination, formed by three carboxylate O atoms and one S atom from three different 3,3′‐thiodipropionate ligands, and two N atoms from two different 4,4′‐(propane‐1,3‐diyl)dipyridine ligands. The CdII centres are bridged through carboxylate O atoms of 3,3′‐thiodipropionate ligands and through N atoms of 4,4′‐(propane‐1,3‐diyl)dipyridine ligands to form two different one‐dimensional chains, which intersect to form a two‐dimensional layer. These two‐dimensional layers are linked by S atoms of 3,3′‐thiodipropionate ligands from adjacent layers to form a three‐dimensional network.  相似文献   

16.
In the title complex, [Ag(NO3)(C9H7N3OS)]n, η1112‐bridging 2‐(pyridin‐4‐ylsulfinyl)pyrimidine (pypmSO) ligands with opposite chiralities are alternately arranged to link the AgI cations through two N atoms and one sulfinyl O atom of each ligand, leading to an extended zigzag coordination chain structure along the [01] direction. An FT–IR spectroscopic study shows a decreased stretching frequency for the η1O‐bonded S=O group compared with that of the free ligand. The parallel chains are arranged and interconnected via O(S=O)...π(pyridine/pyrimidine) and C—H(pyridine)...O(NO3) interactions to furnish a layer almost parallel to the ac plane. Along the b axis, the layers are stacked and stabilized through anion(NO3)...π(pyrimidine) interactions to form a three‐dimensional supramolecular framework. The ligand behaviour of the new diheterocyclic sulfoxide and the unconventional O(S=O)...π(pyridine/pyrimidine) and anion(NO3)...π(pyrimidine) interactions in the supramolecular assembly of the title complex are presented.  相似文献   

17.
In the polymeric title compound, [CuCl2(C6H6N4)]n, each CuII ion is five‐coordinated by four basal atoms (two N atoms from a 2,2′‐biimidazole mol­ecule and two Cl anions) and one axial Cl anion, in a distorted square‐pyramidal coordination geometry. Cl anions bridge the {Cu(C6H6N4)Cl} units into one‐dimensional linear chains, which are reinforced by π–π inter­actions. Adjacent linear chains are linked by N—H⋯Cl hydrogen bonds, resulting in a grid layer. The hydrogen‐bonding pattern can be described in graph‐set notation as C(9)R(9)R(14). This study extends our knowledge of the multifunctional properties of the 2,2′‐biimidazole ligand and of the coordination stereochemistry of copper(II).  相似文献   

18.
The CdII ion in the title complex, [Cd(SCN)2{SC(NH2)2}2], is situated at a centre of symmetry, and is bound to two N atoms belonging to thio­cyanate groups and to four S atoms of bridging thio­urea ligands. The structure consists of infinite chains of slightly distorted edge‐shared Cd‐centred octahedra. The bridging S atoms of two thio­urea ligands comprise the common edge. Some thermal properties are described.  相似文献   

19.
In the title complex, {[Ag(C12H10N2)]NO3}n, the Ag atom, which is in a linear AgN2 geometry, is surrounded by two trans‐related N atoms of two bpe ligands [Ag—N = 2.173 (3) and 2.176 (3) Å; bpe is trans‐1,2‐bis(2‐pyridyl)­ethyl­ene]. The bpe ligands bridge neighbouring Ag atoms to form zigzag polymeric chains in the lattice. These adjacent one‐dimensional zigzag chains are extended into a three‐dimensional supramolecular array by strong interchain π?π interactions between the pyridyl rings of adjacent chains.  相似文献   

20.
In the title dinuclear acetate‐bridged complex, [Cu2(C2H3O2)3(NCS)(C10H9N3)2], the two Cu atoms are five‐coordinated, with a basal plane consisting of two N atoms of a di‐2‐pyridylamine (dpyam) ligand and two O atoms of two different acetate ligands. The axial positions of these Cu atoms are coordinated to N and O atoms from thio­cyanate and acetate mol­ecules, respectively, leading to a distorted square‐pyramidal geometry with τ values of 0.30 and 0.22. Both CuII ions are linked by an acetate group in the equatorial–equatorial positions and have synanti bridging configurations. Hydrogen‐bond inter­actions between the amine H atom and the coordinated and uncoordinated O atoms of the acetate anions generate an infinite one‐dimensional chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号