首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
微孔/介孔复合分子筛的合成及其对CO2的吸附性能   总被引:1,自引:0,他引:1  
采用两步晶化法将合成的沸石前驱液(S)或沸石固体粉末(P)经不同浓度(c)的NaOH处理后, 分别以表面活性剂十六烷基三甲基溴化铵(CTAB)软模板或介孔炭(Meso-C)硬模板为导向剂, 自组装合成S-β-MCM41(c)、P-β-MCM41(c)、P-ZSM-MCM41(c)、P-ZSM-C系列微孔/介孔复合分子筛. 考察了沸石分子筛种类、碱处理液浓度以及介孔模板剂对合成复合分子筛结构与性能的影响. X射线衍射(XRD)、透射电子显微镜(TEM)和氮气吸附-脱附表征结果表明产物具有微孔/介孔多级孔结构. 该材料对CO2的吸附能力比纯微孔或介孔材料均有明显提高, 其中P-ZSM-MCM41(2)的CO2吸附容量最大可达1.51 mmol·g-1, 为ZSM-5沸石吸附量的两倍多.  相似文献   

2.
Hierarchical porous materials with zeolite structures show great promise in catalysis due to combining the advantages of zeolites and mesoporous materials. Here a novel template-free sol–gel method is developed to synthesize hierarchical porous silica materials. This method involves solvothermal recrystallization of the xerogel converted from uniform silicalite-1 precursor sol via vacuum drying process. The zeolite sol and the solid samples were characterized by laser light scattering, XRD, N2 adsorption/desorption isotherm, FTIR, SEM, TEM and thermal analysis technologies. The results show that we obtain two novel materials with different mesoporous structures and silicalite-1 walls by using different recrystallization media, one of which has irregular arrays of mesopores, the other possesses 3D wormhole mesoporous structure. We speculate that formation of different mesoporous structures results from different nucleation and growth process of materials  相似文献   

3.
The adsorption of propylene and propane on zeolite NaX with and without a saturated (36 wt%) amount of CuCl have been investigated. The single component adsorption isotherms could be well described with a Dual-Site Langmuir model. The dispersion of CuCl results in a decrease of the maximum adsorption capacity of the zeolite for both components. For propylene a strong adsorption via π-complexation with CuCl is present, increasing the adsorption selectivity of the zeolite. The binary mixture (50:50) adsorption was determined via breakthrough/desorption experiments at 318, 358 and 408 K with a partial pressure of the two components between 0.8–54 kPa. For NaX the mixture loading could be well described with the IAS-theory and the single component isotherms, both qualitatively and quantitatively. A transition from an enthalpy controlled adsorption at lower loadings to an entropy affected adsorption at higher loadings was observed. The IAS-theory could only qualitatively describe the trends in the observed mixture adsorption for the CuCl/NaX adsorbent. The dispersion of CuCl in NaX results in a modest improvement of the adsorption selectivity for propylene over propane (from 3–7 to 15–30) but at the expense of a reduced capacity.  相似文献   

4.
A composite silicate material, which possesses the characteristics of both microporous zeolite and mesoporous silica materials, is developed by top–down and bottom–up synthesis techniques. In order to realize a micro- and mesoporous composite material, several essential points must be clarified, since each porous material is synthesized under very different metastable conditions: zeolite is a silicate crystal, while the wall of mesoporous material is composed of amorphous silicate. Here, some aspects of the realization of a micro- and mesocomposite porous material are described, as are our experimental results regarding the successful production of composite catalyst.  相似文献   

5.
The adsorption data of Gorbach et al. (Adsorption 10(1): 29–46, 2004) and Morris (J. Colloid Interface Sci. 28: 149–155, 1968) for the adsorption of water on 4A zeolite pellets is re-analyzed. Model isotherms are derived considering a two site hypothesis, one for the α cage and one for the β cage. Four simple model isotherms are fitted to the data. Both a dual site Toth or dual site Langmuir isotherm model fit the data adequately. The optimized standard enthalpy and entropy of adsorption parameters derived from the data are surprising for the β cage. The optimized standard enthalpy of the β cage is 1/3rd of that observed calorimetrically, and the standard entropy of adsorption is positive, a physical impossibility. Substituting the calorimetric enthalpy of adsorption corrected the standard differential entropy of sorption values resulting in the standard entropy of sorption values varying significantly with temperature. This variation is postulated to be due to either water of hydration formation, or clathrate formation, or the formation of clusters of water such as dimers, trimers, etc.  相似文献   

6.
H-ZSM-5 (Si/Al = 10.6 and 20) efficiently catalyzes the transformation of ethanol into C5-C12 gasoline hydrocarbons in 27–33 mass % yield at 320°C and feed rate 20 mmol C2H5OH/(gcat·h). Only ethylene is produced on the mesoporous zeolite H-ZSM-5/Al-MCM-41 with 100% ethanol conversion. This discrepancy may be attributed to blockage of the ZSM-5 micropores in the mesoporous zeolite structure.  相似文献   

7.
Micro–mesoporous materials combining the structural and sorption characteristics of a mesoporous molecular sieve (MMS) and zeolite BEA were obtained by the “dry gel conversion” method – partial zeolitization of silica MMS SBA-15 in the presence of tetraethylammonium hydroxide. The volume of the mesopores reaches 0.65 cm3/g, while that of the micropores is in the region of 0.1 cm3/g. The acidity of the obtained zeolitized materials differs from that of BEA; the total concentration of medium-strength acid centers (maximum thermal desorption of ammonia at ~315 °C) amounts to 0.15 mmol/g.  相似文献   

8.
Probing the mesopore architecture in mesoporous zeolites is of importance for large scale applications of the materials. In this work, the adsorption and diffusion of mesitylene with larger molecule size in mesoporous ZSM-5 zeolites were carried out, in order to acquaint the availability and interconnectivity of mesopores in zeolite crystals. The comparisons of the shape of adsorption isotherms and the mesopore volume calculated from mesitylene and N2 adsorption in mesoporous ZSM-5 zeolites with different mesoporosities can be used to discriminate two cases of mesopores: accessible mesopores connected to external surface of the zeolite crystals and non-accessible meso-voids that are occluded in the microporous matrix. Furthermore, the effective diffusivity and activation energy of mesitylene in mesoporous ZSM-5 extracted from ZLC desorption curves as a function of mesopore volume calculated from mesitylene adsorption reveal the enhancement of mesopore interconnectivity to molecule diffusion in zeolite crystals.  相似文献   

9.
The adsorption behavior of congo red from aqueous solution on Cu-BTC/SiO2 was investigated. Cu-BTC/SiO2 with mesoporous structure and large surface area was prepared by loading Cu-BTC into the mesoporous silica using in-situ synthesis method. The X-ray diffraction, scanning electron microscopy, and nitrogen adsorption–desorption analysis were used to characterize the structure and morphology of the prepared materials. The adsorption studies showed that the adsorption isotherm of congo red on Cu-BTC/SiO2 fitted well with Freundlich adsorption model and congo red is easy to be adsorbed by Cu-BTC/SiO2. The thermodynamic study showed that the adsorption behavior of congo red on Cu-BTC/SiO2 is an exothermic process at temperature under investigation.  相似文献   

10.
The molecular statistical method for evaluating the distribution of active sites of various adsorbents relative to their energies has been improved. This method is used not only for the treatment of experimental data on the adsorption of hydrocarbons on various adsorbents, which is the usual procedure, but also data on the adsorption of polar water and methanol molecules on the active sites of adsorbent surfaces. Two types of active sites differing in energy have been shown to exist on the surface of graphitized carbon black, the complex shungite carbon/mineral adsorbent, and modified Silochrom. Chromatographic, calorimetric, and structural adsorption data were used to establish the relationship between the observed maxima of the energy distribution function of the adsorption sites with concrete adsorption sites or pores of the surface, on which the molecules are adsorbed. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 44, No. 5, pp. 315–320, September–October, 2008.  相似文献   

11.
Micro-mesoporous materials with various ratios between micro- and mesopores were prepared by the recrystallization of zeolite BEA in an alkaline medium in the presence of cetyltrimethylammonium bromide. The materials were characterized by X-ray diffraction, low-temperature nitrogen adsorption, and IR spectroscopy. Recrystallization under mild conditions did not cause substantial changes in the number of acid centers but increased the accessibility of acid centers to large-sized molecules because of the creation of mesopores. An increase in the degree of recrystallization caused first partial and then complete zeolite transformation into MSM-41 mesoporous aluminosilicate, which was accompanied by a decrease in the number of acid centers. The IR spectra were used to determine the diffusion coefficients of cumene in the initial and recrystallized samples. Recrystallization increased the diffusion coefficient by 3–4 times. Original Russian Text ? V.V. Ordomskii, Yu.V. Monakhova, E.E. Knyazeva, N.S. Nesterenko, I.I. Ivanova, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 6, pp. 1150–1155.  相似文献   

12.
A hierarchically structured composite material with interconnecting meso- and micropores has been developed with the aim to optimize zeolite performance. A general synthetic method has been developed that, in a controlled manner, allows for various types of nanosized zeolite to be incorporated into a three-dimensional mesoporous matrix. Nanosized zeolite Beta was used to exemplify this new approach, resulting in a system in which zeolite Beta shows a higher cracking activity per gram of zeolite than pure nanosized zeolite Beta for the model feed n-hexane. Additionally, FTIR studies of CO and NH3 adsorption revealed that the nature of the acid sites in the nanozeolite has been partially modified due to the interactions with the mesoporous matrix, TUD-1.  相似文献   

13.
The high resolution adsorption isotherms of N2 (77.4 K) and Ar (87.3 K) have been measured for two nonporous silicas with different silanol contents (3.3 and 0.35 OH/nm2) and for two MFI zeolite with different Al contents (Si/Al=12.5 and 500). Silanol groups and Al sites (acid sites) gives the significant effect on the N2 isotherms at submonolayer, but the Ar isotherms are independent of silanols and Al sites. The Ar isotherms, therefore, are preferable in calculation of microporosity of zeolites. The N2 and Ar isotherms for MFI zeolite (Si/Al=500) have been measured at temperatures of 77–94 K, from which the differential adsorption energies of N2 and Ar are calculated. The interaction of N2 with channel surface of MFI zeolite is greater than that of Ar in the range of α s =0.1–0.7. The hystereses are detected for the N2 isotherm in p/p o=0.1–0.3 at 77.4 K and for the Ar isotherm in p/p o=3×10−4–2×10−3 at 87.3 K. However, it is difficult to explain the hysteresis phenomenon using differential adsorption energy.  相似文献   

14.
The attempt of preparing efficient adsorbent to capture nitrosamines in aqueous solution is reported in this paper, in order to develop new mesoporous functional materials for environment protection. Adsorption of nitrosamines in an aqueous solution containing the tobacco-extract, by zeolite and mesoporous silica was investigated in detail. The influence of structural parameters such as pore size, Si/Al ratio and cation on the adsorption of zeolite was examined. Emphatically, two modification methods, one-pot synthesis and solid state grinding were employed to incorporate aluminum in mesoporous silica MCM-41 since MCM-41 possesses the suitable pore size for the trap of tobacco specific nitrosamines (TSNAs) in solution. The resulting composites were characterized by XRD, N2 adsorption at 77 K, FTIR and NH3-TPD to inspect their property and function. The impact of modifier amount and preparative method on the actual adsorption of the Al-containing composite was investigated.  相似文献   

15.
The kinetics of the isothermal adsorption of ethanol from an aqueous solution onto a hydrophobic zeolite of the NaZSM-5 type in the temperature range 298–333 K was investigated. Specific shape parameters of the adsorption degree curves were determined. The changes in the specific shape parameters of the adsorption degree curves with temperature were determined. The kinetic parameters of ethanol adsorption (Ea,ln A) were determined by the initial rate, the saturation rate and the maximum rate methods as well as from the Johnson, Mehl and Avramy equation. The kinetic model of ethanol adsorption kt=[1−(1−α)1/3] was determined by the “model fitting” method. Ethanol adsorption from aqueous solution onto NaZSM-5 is a kinetically controlled process limited by the rate of three-dimensional movement of the boundary layer of the adsorption phase. A model for the mechanism of ethanol adsorption onto NaZSM-5 is suggested on the basis of the kinetic model. Ethanol molecules in aqueous solution are associated in clusters. The activation energy of the adsorption process corresponds to the energy required for the detachment of an ethanol molecule from a cluster and its adsorption onto the zeolite.  相似文献   

16.
A study was carried out on the effect of the conditions of the matrix carbonization of sucrose in MCM-48 and SBA-15 silica mesoporous molecular sieves on the structure and adsorption properties of the resultant CMK-1 and CMK-3 mesoporous carbon molecular sieves. CMK-3 was found to be a structurally similar replica of SBA-15. An exact replica is not formed in the case of MCM-48. This failure is attributed to considerable deformation of the matrix during the carbonization process due to the bicontinuous pore system and thinner framework walls. This is probably related to transformation of the carbon material into a low symmetry product upon detemplating of the C/MCM-48 composite (dissolution of the silica). Mesoporous carbon materials were obtained with good adsorption structure features. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 44, No. 6, pp. 365–370, November–December, 2008.  相似文献   

17.
The diffusion-limited adsorption of individual ethane or of ethane from mixtures with hydrogen by thin pellets of NaA, CaA and LiLSX zeolites or by thick layers of granulated zeolites was studied at room temperature. The rates of adsorption were monitored by development of the bands from the symmetry forbidden C–H stretching vibrations that were not observed for gaseous molecules. Diffusivity of individual ethane in the micropores of the thin NaA pellet obtained by this method is equal to 6 ⋅ 10−16 m2/s. This value agrees well with that one previously reported in literature. For adsorption of pure ethane in the larger primary micro pores of CaA or LiLSX only the lower limits of diffusivities were estimated. Diffusion-limited adsorption of ethane from mixtures with hydrogen by the thicker layers of granulated zeolites is much slower and is limited by counterdiffusion inside much larger channels between the zeolite granules. Estimation of diffusion coefficients of such counterdiffusion indicated that they are by two orders of magnitude lower than those for diffusion in gaseous mixtures of similar composition. This paper is dedicated to the memory of Professor Wolfgang Schirmer.  相似文献   

18.
The equation describing the experimental data of NaX zeolite deformation during adsorption of xenon at pressures of 0.001–7 MPa and temperatures of 252–333 K was obtained on the basis of the generalized Lennard-Jones pair interaction potential. The temperature dependences of the constants in the equation were determined. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1887–1890, October, 1999.  相似文献   

19.
The aim of this study is the development of a new adsorbent for the desiccant material which can be regenerated by the domestic exhaust heat by using natural mesoporous material, Wakkanai siliceous shale. To improve this shale’s performance to adsorb/desorb the water vapor, lithium chloride, calcium chloride or sodium chloride was supported into the mesopores by impregnating with each chloride solution. Especially sodium chloride was effective to increase the water vapor adsorption amount 5–7 times of that of natural shale in the relative humidity range from 50 to 70%. Moreover, the appropriate impregnating concentrations were determined as 5wt% from the relationship between the maximum water vapor adsorption amount and the mesopore volume. Based on these results, a new desiccant filter has been developed by impregnated original paper with lithium chloride and sodium chloride. This paper contained shale powder in the synthetic fibers. The dehumidification performance of this filter was evaluated under the simulated summer condition in Tokyo. From the cyclic adsorption/regeneration test, this shale and chlorides filter could adsorb and desorb 60 g/h water vapor repeatedly at the regeneration temperature of 40°C. On the other hand, a silica gel filter and a zeolite filter adsorbed and desorbed only 10 g/h and 25 g/h, respectively. These results suggested that the shale impregnated with the chlorides has the best dehumidification ability as a new desiccant material. Further, the desiccant filter made from the shale will achieve the effective use of the low temperature exhaust heat.  相似文献   

20.
这篇论文综述了美国加州大学戴维斯分校科学院院士Navrotsky课题组多年来在多孔材料上取得的一系列热化学研究结果。讨论了热化学对微孔、介孔材料的结构稳定性和合成过程的影响。借助多种测热手段对影响骨架结构的热焓、热熵和自由能进行了系统的测量和计算。研究数据表明一系列纯硅分子筛、介孔材料和磷酸铝多孔材料同相应的石英相和块磷铝矿相相比能量上最多只高出15 kJ·mol-1。一系列纯硅分子筛的熵值比石英相高出3.2—4.2 J·K-1·mol-1;在0—12.6 J·K-1·mol-1范围内相对应的自由能几乎没有差别。因此,对不同微孔、介孔材料,其骨架结构在能量上是几乎没有区别的。另外,本文通过介绍一种新型测热方法——原位测热,揭示了分子筛合成过程中的动力学和成核/结晶机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号