首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 656 毫秒
1.
反平面圆形夹杂和多圆孔多裂纹相互作用问题   总被引:3,自引:0,他引:3  
动用复变函数及积分方法方法求解了反平面圆形夹杂和多圆孔多裂纹相互作用问题。为解决该问题,建立了两种类型的基本解。利用叠加原理和所得的基本解没圆孔和裂纹表面取待定的基本解密度函数,可得一组Fredholm积分方程,通过积分方程组的数值求解,可以得到密度函数的离散值,进而得到应力强度因子。  相似文献   

2.
半平面多边缘裂纹反平面问题的奇异积分方程   总被引:1,自引:0,他引:1  
利用复变函数和奇异积分方程方法,求解弹性范围内半平面多边缘裂纹的反平面问题.提出了满足半平面边界自由的由分布位错密度表示的单边缘裂纹的基本解,此基本解由主要部分和辅助部分组成.将半平面多边缘裂纹问题看作是许多单边缘裂纹问题的叠加,建立了一组Cauchy型奇异积分方程.然后,利用半开型积分法则求解该奇异积分方程,得到了裂纹端处的应力强度因子.最后,给出了几个数值算例.  相似文献   

3.
用超奇异积分方程法将多场耦合载荷作用下磁电热弹耦合材料内含任意形状和位置三维多裂纹问题转化为求解一以广义位移间断为未知函数的超奇异积分方程组问题,退化得到内含任意形状平行三维多裂纹问题的超奇异积分方程组;推导出平行三维多裂纹问题的裂纹前沿广义奇异应力场解析表达式、定义了广义(应力、应变能)强度因子和广义能量释放率;应用有限部积分概念及体积力法,为超奇异积分方程组建立了数值求解方法,编制了FORTRAN程序,以平行双裂纹为例,通过典型算例,研究了广义(应力、应变能)强度因子随裂纹位置、裂纹形状及材料参数变化规律,得到裂纹断裂评定准则. 最后,分析了裂纹间干扰、屏蔽作用及其在工程实际中的应用.   相似文献   

4.
采用Green函数法研究任意有限长度的孔边裂纹对SH波的散射和裂纹尖端场动应力强度因子的求解.取含有半圆形缺口的弹性半空间水平表面上任意一点承受时间谐和的出平面线源荷载作用时位移函数的基本解作为Green函数,采用裂纹``切割'方法并根据连接条件建立起问题的定解积分方程,得到动应力强度因子的封闭解答.最后给出了孔边裂纹动应力强度因子的算例和结果,并讨论了圆孔的存在对动应力强度因子的影响.  相似文献   

5.
孔边裂纹对SH波的散射及其动应力强度因子   总被引:15,自引:1,他引:14  
刘殿魁  刘宏伟 《力学学报》1999,31(3):292-299
采用Green函数法研究任意有限长度的孔边裂纹对SH波的散射和裂纹尖端场动应力强度因子的求解.取含有半圆形缺口的弹性半空间水平表面上任意一点承受时间谐和的出平面线源荷载作用时位移函数的基本解作为Green函数,采用裂纹“切割”方法并根据连接条件建立起问题的定解积分方程,得到动应力强度因子的封闭解答.最后给出了孔边裂纹动应力强度因子的算例和结果,并讨论了圆孔的存在对动应力强度因子的影响  相似文献   

6.
三维热权函数法和多虚拟裂纹扩展技术   总被引:1,自引:0,他引:1  
热权函数法直接利用温度场与热权函数的乘积的积分来求应力强度因子(SIF)的过渡过程,它可以免除对每一时刻进行热弹性力学有限元或边界元应力分析,计算效率大大提高。本文给出了三维热权函数法的基本方程,并提出了求解三维热权函数法基本方程的多虚拟裂纹扩展法(MVCE法)。在MVCE法中,可以引入无穷多个虚拟裂纹扩展模式;虚拟裂纹扩展模式与应力强度因子的插值直接相联系,所得到的方程组的系数矩阵是一个三对角矩阵,具有良好的计算性能。它对于裂纹前缘SIF分布急剧变化的情况,有良好的数值模拟能力。实例计算表明,MVCE法具有权高的计算效率,并具有很高的计算精度。  相似文献   

7.
裂纹端部细短纤维的应力分析   总被引:5,自引:0,他引:5  
基于裂纹端部存在与其裂纹面相垂直的二相细短纤维分析模型,采用叠加原理推导了求解纤维表面应力分布函数的积分方程,通过简化得到了该方程的解析表达显式,该积分方程的特征值方程是纤维几何参数,材料常数以及纤维相对于裂纹位置的相关函数,当材料参数不满足特征方程时,积分方程将具有唯一解;并借助数值方法,给出了纤维剪应力分布算例,和纤维对应力强度因子的影响。  相似文献   

8.
张传立  聂国华 《力学季刊》2004,25(4):444-449
本文利用边界单元法及基于Peierls-Nabarro模型的位错理论,分析了理想纳米触头下多位错的生成,得到了滑移面上多位错的构形以及表面位移与载荷的关系曲线。根据得到的计算结果分析了薄膜厚度的影响,得到了与已有实验结果相同的结论。通过把表面看成一个包含在无穷大弹性体中的无穷大弹性体中无穷大裂纹来考虑表面的影响,从而可以直接采用已有的边界积分方程。该方法在连续介质力学的计算中引入了包含原子信息的层间势能函数,为分析多尺度的力学问题提供了有效的方法。  相似文献   

9.
利用复变函数和奇异积分方程方法,求解反平面弹性中半平面边缘内分叉裂纹问题。提出了满足半平面边界自由的由分布位错密度表示的半平面中单裂纹的基本解,此基本解由主要部分和辅助部分组成。将半平面边缘内分叉裂纹问题看作是许多单裂纹问题的叠加,建立了以分布位错密度为未知函数的Cauchy型奇异积分方程组。然后,利用半开型积分法则求解奇异积分方程,得到了裂纹端处的应力强度因子。文中给出两个数值算例的计算结果。  相似文献   

10.
基于弹性材料的动态基本方程,结合广义Betti-Rayleigh互易等式与时域下的边界积分方程,推导得到时域下的超奇异积分方程组。引入Laplace域下的动态基本解,将经过主部分析的积分核函数分解为静态和动态部分,其中动态积分核不具有奇异性。在裂纹前沿附近单元,采用与理论分析一致的平方根位移模型。结合Lubich时间卷积实现拉氏变换,采用配置点法计算超奇异积分,获得问题的数值解。并针对椭圆裂纹算例编写Fortran程序,得到冲击荷载作用下张开型裂纹的动态应力强度因子变化规律,数值结果稳定且收敛速度快。  相似文献   

11.
余迎松  秦太验 《力学与实践》2005,27(3):40-42,72
采用Somigiliana公式给出了三维横观各向同性压电材料中的非渗漏裂纹问题的一般解和超奇异积分方程,其中未知函数为裂纹面上的位移间断和电势间断.在此基础上,使用有限部积分和边界元结合的方法,建立了超奇异积分方程的数值求解方法,并给出了一些典型数值算例的应力强度因子和电位移强度因子的数值结果,结果令人满意.  相似文献   

12.
朱伯靖  秦太验 《力学学报》2007,39(4):510-516
应用有限部积分概念和广义位移基本解,垂直于磁压电双材料界面三维复合型裂纹问题被转 化为求解一组以裂纹表面广义位移间断为未知函数的超奇异积分方程问题. 进而,通过主部 分析法精确地求得裂纹尖端光滑点附近的奇性应力场解析表达式. 然后,通过将裂纹表面 位移间断未知函数表达为位移间断基本密度函数与多项式之积,使用有限部积分法对超奇异 积分方程组建立了数值方法. 最后,通过典型算例计算,讨论了广义应力强度因子的变化规 律.  相似文献   

13.
横观各向同性三维热弹性力学通解及其势理论法   总被引:3,自引:0,他引:3  
陈伟球  丁皓江 《力学学报》2003,35(5):578-583
通过引入两个位移函数,对用位移表达的运动平衡方程作了简化.利用算子理论,严格地导出了横观各向同性非耦合热弹性动力学问题的通解.对于静力学问题,通解的形式可进一步简化成用4个准调和函数来表示.具体考察了横观各向同性体内平面裂纹上下表面有对称分布温度作用的问题,推广了势理论方法,导出了一个积分方程和一个微分-积分方程.针对币状裂纹表面受均布温度作用情形,给出了具体的解。  相似文献   

14.
利用广义Betti-Rayleigh 互易公式给出了二维压电材料非渗透裂纹问题的一般解和奇异积分方程,其中未知函数为裂纹上的位移间断和电势间断的导数. 在理论分析的基础上,使用高斯-切比雪夫求积公式及Lubich 卷积积分方法建立了问题的数值求解方法,并给出典型算例的广义动应力强度因子随时间变化的规律.  相似文献   

15.
A three-dimensional crack problem in electromagnetothermoelastic multiphase composites (EMTE-MCs) under extended loads is investigated in this paper. Using Green’s functions, the extended general displacement solutions are obtained by the boundary element method. This crack problem is reduced to solving a set of hypersingular integral equations coupled with boundary integral equations, in which the unknown functions are the extended displacement discontinuities. Then, the behavior of the extended displacement discontinuities around the crack front terminating at the interface is analyzed by the main-part analysis method of hypersingular integral equations. Analytical solutions for the extended singular stresses, the extended stress intensity factors (SIFs) and the extended energy release rate near the crack front in EMTE-MCs are provided. Also, a numerical method of the hypersingular integral equations for a rectangular crack subjected to extended loads is put forward with the extended displacement discontinuities approximated by the product of basic density functions and polynomials. In addition, distributions of extended SIFs varying with the shape of the crack are presented. The results show that the present method accurately yields smooth variations of extended SIFs along the crack front.  相似文献   

16.
应用波动时域超奇异积分法将P波、S波和磁电热弹多场耦合作用下同震断层任意形状三维裂纹扩展问题转化为求解以广义位移间断率为未知函数的超奇异积分方程组问题;定义了广义应力强度因子,得到裂纹前沿广义奇异应力增量解析表达式;应用波动时域有限部积分概念及体积力法,为超奇异积分方程组建立了数值求解方法,编制了FORTRAN程序,以三维矩形裂纹扩展问题为例,通过典型算例,研究了广义应力强度因子随裂纹位置变化规律;分析了同震断层裂纹扩展中力、磁、电场辐射规律.   相似文献   

17.
Using the hypersingular integral equation method based on body force method, a planar crack in a three-dimensional transversely isotropic piezoelectric solid under mechanical and electrical loads is analyzed. This crack problem is reduced to solve a set of hypersingular integral equations. Compare with the crack problems in elastic isotropic materials, it is shown that for the impermeable crack, the intensity factors for piezoelectric materials can be obtained from those for elastic isotropic materials. Based on the exact analytical solution of the singular stresses and electrical displacements near the crack front, the numerical method of the hypersingular integral equation is proposed by the finite-part integral method and boundary element method, which the square root models of the displacement and electric potential discontinuities in elements near the crack front are applied. Finally, the numerical solutions of the stress and electric field intensity factors of some examples are given.  相似文献   

18.
This paper presents a set of 3D general solutions for thermoporoelastic media for the steady-state problem. By introducing two displacement functions, the equations governing the elastic, pressure and temperature fields are simplified. The operator theory and superposition principle are then employed to express all the physical quantities in terms of two functions, one of which satisfies a quasi–Laplace equation and the other satisfies a differential equation of the eighth order. The generalized Almansi's theorem is used to derive the displacements, pressure and temperature in terms of five quasi-harmonic functions for various cases of material characteristic roots. To show its practical significance, an infinite medium containing a penny-shaped crack subjected to mechanical, pressure and temperature loads on the crack surface is given as an example. A potential theory method is employed to solve the problem. One integro-differential equation and two integral equations are derived, which bear the same structures to those reported in literature. For a penny-shaped crack subjected to uniformly distributed loads, exact and complete solutions in terms of elementary functions are obtained, which can serve as a benchmark for various kinds of numerical codes and approximate solutions.  相似文献   

19.
This paper concerns itself with the fundamental solutions of the thermo-electro-elastic field in an infinite medium, weakened by a half-infinite plane crack with two identical point thermal loads applied on the crack surfaces. The corresponding mixed boundary value problem is solved by virtue of the potential theory method conjugated with the general solutions. The boundary governing equations are solved by using the results available in literature. Exact and complete three-dimensional (3D) fundamental solutions are presented in terms of elementary functions. The singularity at the crack tip is analyzed explicitly. The obtained solutions will be of high significance to the related BEM analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号