首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
聚合氯化铝的制备及在微污染水处理中的应用   总被引:1,自引:0,他引:1  
用酸溶法制备聚合氯化铝,对合成产品进行红外光谱分析,并应用于微污染原水的处理。处理微污染原水结果表明:当投加量为40.0 mg/L,pH值为6.0~9.0时,剩余浊度达到1.0NTU以下,总有机碳(Total Or-ganic Carbon,TOC)去除率达到41.2%。对比试验结果表明自制的聚合氯化铝的除浊效果优于一些常见工业聚合氯化铝。  相似文献   

2.
Source water pollution by agricultural chemicals poses great threat to drinking water safety and the removal of such contaminants is a challenge to the water treatment industry. In this work, the adsorption behaviors of methyl parathion (MP) from different natural waters onto different kinds of powdered activated carbons (PAC) were investigated systematically. On the basis of the characterization of the PACs and natural organic matter (NOM), the suitability of PAC with NOM for effective removal of MP was proposed, and the effect of competitive adsorption on MP removal under two PAC dosing patterns was evaluated. The results indicated that NOM adsorption was dependent on the molecular weight (MW) distribution of organic compounds and the pore size distribution of PAC. The mesopore surface area with pore size>3 nm was dominant for the adsorption of the NOM fraction in the range of 500 Da<MW<3000 Da. Competition for adsorption sites by smaller MW NOM had significant effect on the adsorption of target organic compound in the simultaneous adsorption pattern. Whereas in the NOM-preloaded adsorption pattern, pore blockage by relatively larger MW NOM resulted in markedly reduction in both adsorption capacity and adsorption kinetics, the diffusion rate of MP on PAC could be affected by the PAC dosage, pore size distribution and the MW distribution of NOM.  相似文献   

3.
The flocculation activity of commercially available anionic poly (acrylamide‐co‐acrylic acid), p (AAm‐co‐AA) has been significantly improved, without any inorganic coagulant aid. The effect of three types of surfactants, anionic sodium lauryl ether sulfate (SLES) (Palm Epimen), nonionic cocamide DEA, zwitterionic amphoteric Amphotensid B5, and one organic cation, trimethylammonium bromide (TAB) on coagulation/flocculation performance have been investigated. The performance has been analysed in terms of turbidity, total suspended solid (TSS), total iron (TI) content, and BTEX for treating two kinds of industrial wastewater, produced water (PW) and starch water. We have shown that adding a small amount of each of the studied surfactants, and especially cationic TAB, significantly increases the coagulation/flocculation performance without modifying pH levels. A combination of low dosage of flocculant (310 ppb) and TAB (310 ppb), after 5 minutes, presented 88%, 81%, and 62% reduction in turbidity, TSS, and TI content, respectively, whereas by using 5 ppm of flocculant alone (16 times more), only 76%, 75%, and 43% removal was obtained. The results reveal that TAB performs as an efficient coagulant booster. Compared with regular inorganic coagulants, it is more cost‐effective, reduces the consumption of treatment chemicals, and the pH‐dependency of contaminants removal.  相似文献   

4.
Moringa oleifera (Moringa) seeds contain a natural cationic protein (MOCP) that can be used as an antimicrobial flocculant for water clarification. Currently, the main barrier to using Moringa seeds for producing potable water is that the seeds release other water-soluble proteins and organic matter, which increase the concentration of dissolved organic matter (DOM) in the water. The presence of this DOM supports the regrowth of pathogens in treated water, preventing its storage and later use. A new strategy has been established for retaining the MOCP protein and its ability to clarify and disinfect water while removing the excess organic matter. The MOCP is first adsorbed and immobilized onto sand granules, followed by a rinsing step wherein the excess organic matter is removed, thereby preventing later growth of bacteria in the purified water. Our hypotheses are that the protein remains adsorbed onto the sand after the functionalization treatment, and that the ability of the antimicrobial functionalized sand (f-sand) to clarify turbidity and kill bacteria, as MOCP does in bulk solution, is maintained. The data support these hypotheses, indicating that the f-sand removes silica microspheres and pathogens from water, renders adhered Escherichia coli bacteria nonviable, and reduces turbidity of a kaolin suspension. The antimicrobial properties of f-sand were assessed using fluorescent (live-dead) staining of bacteria on the surface of the f-sand. The DOM that can contribute to bacterial regrowth was shown to be significantly reduced in solution, by measuring biochemical oxygen demand (BOD). Overall, these results open the possibility that immobilization of the MOCP protein onto sand can provide a simple, locally sustainable process for producing storable drinking water.  相似文献   

5.
Chitosan for coagulation/flocculation processes - An eco-friendly approach   总被引:4,自引:0,他引:4  
Chitosan is a partially deacetylated polymer obtained from the alkaline deacetylation of chitin, a biopolymer extracted from shellfish sources. Chitosan exhibits a variety of physico-chemical and biological properties resulting in numerous applications in fields such as cosmetics, biomedical engineering, pharmaceuticals, ophthalmology, biotechnology, agriculture, textiles, oenology, food processing and nutrition. This amino-biopolymer has also received a great deal of attention in the last decades in water treatment processes for the removal of particulate and dissolved contaminants. In particular, the development of chitosan-based materials as useful coagulants and flocculants is an expanding field in the area of water and wastewater treatment. Their coagulation and flocculation properties can be used to remove particulate inorganic or organic suspensions, and also dissolved organic substances. This paper gives an overview of the main results obtained in the treatment of various suspensions and solutions. The effects of the characteristics of the chitosan used and the conditions in solution on the coagulation/flocculation performance are also discussed.  相似文献   

6.
采用聚合硅酸硫酸铁(PFSS)和聚合硫酸铁(PFS)两种无机高分子混凝剂处理黄河水,考察了两种混凝剂对浊度和UV254的去除效果,并结合混凝过程中絮体zeta电位的变化,分析了两种混凝剂的混凝机理.通过激光粒度仪在线观察混凝过程中絮体的生长情况,发现PFSS比PFS生成的絮体生长速度快,尺寸大.对形成的絮体施加不同强度的剪切力,通过观察絮体粒径的变化来比较絮体的强度,发现PFSS生成的絮体强度较大.研究了在不同剪切强度和不同剪切时间下絮体的破碎程度和絮体的恢复能力(分别以破碎因子Bf和恢复因子Rf表示),发现在强剪切力和长剪切时间下Bf和Rf均较大;在相同条件下PFSS生成絮体的Bf较小而PFS生成絮体的Rf较大,这表明前者的抗剪切能力较强,而后者具有更强的再生能力.  相似文献   

7.
Aluminium and iron salts are widely used as coagulants in water and wastewater treatment and in some other applications. They are effective in removing a broad range of impurities from water, including colloidal particles and dissolved organic substances. Their mode of action is generally explained in terms of two distinct mechanisms: charge neutralisation of negatively charged colloids by cationic hydrolysis products and incorporation of impurities in an amorphous hydroxide precipitate (‘sweep flocculation’). The relative importance of these mechanisms depends on factors such as pH and coagulant dosage. Alternative coagulants, based on prehydrolysed forms of aluminium and iron, are more effective than the traditional additives in many cases, but their mode of action is not completely understood, especially with regard to the role of charge neutralisation and hydroxide precipitation. Some basic features of metal hydrolysis and precipitate formation are briefly reviewed and the action of hydrolysing coagulants is then discussed, with examples from the older literature and from some recent studies on model systems. Dynamic monitoring of floc formation and breakage can give useful insights into the underlying mechanisms. Although the results can be reasonably well explained in terms of established ideas, a detailed understanding of the ‘sweep flocculation’ mechanism is not yet available. There are also still some uncertainties regarding the action of pre-hydrolysed coagulants.  相似文献   

8.
Two inorganic polymer coagulants,polyferric silicate sulphate(PFSS) and polyferric sulphate(PFS),were comparatively evaluated in the Yellow River water treatment.The removal efficiency of turbidity and UV254 were investigated,and the zeta potential was measured.An online laser scatter instrument was used to determine the size distribution of flocs formed in the coagulation processes.Compared with PFS,PFSS forms flocs with higher growth rates and larger sizes.The formed flocs were exposed to a series of shea...  相似文献   

9.
The kinetics of clarification of a kaolin suspension and turbid natural water in the presence of coagulants (aluminum sulfate and aluminosilicate) and flocculants (nonionic, cationic, and anionic Praestols) was studied in relation to the concentrations of coagulants and flocculants.  相似文献   

10.
The relative importance of three different Al species, Al(a) (monomeric species, instantaneous reacted species), Al(b) (medium polymer species, reacted less than 120 min), and Al(c) (colloidal or solid species, no reaction), defined by timed complexation reaction rate measured by using ferron reagent in polyaluminum chloride (PACl) was investigated in terms of DOC (dissolved organic carbon), UV(254), and turbidity removal efficiencies. Micro-polluted, typical North China, source waters were used to conduct the experiments. The results show that DOC removal is correlated well to the content of Al(b). Removal of UV(254) is determined by the content of Al(b) and Al(c), particularly Al(c). Turbidity removal is primarily related to the content of Al(c); however, Al(b) could destabilize particles efficiently, and the flocs formed by Al(b) are not as large as those formed by Al(c), which affected the settling efficiency. Unlike the preformed Al(b), the in situ formed Al(b) could remove turbidity more efficiently since Al(c) is the dominant final species formed during coagulation. Al(a) shows a strong ability to react with some unsatisfied coordinate bonds of organic matter to facilitate particle and DOC removal. The distinct coagulation feature of Al(a), Al(b), and Al(c) can be applied to develop tailor-made PACl (with the correct distribution of Al species) to match the characteristics of raw water for optimized coagulation.  相似文献   

11.
A possibility of using a digital camera and the subsequent computer processing of chromaticity characteristics of a photo image for the determination of the turbidity of liquids is studied on examples of measurements of the transparency of technical sulfuric acid and the determination of the kaolin turbidity of water. Measurements were performed on a modified Jackson turbidimeter. It was shown that, in the RGB space, the contrast of a photo image of an alignment template is a chromaticity characteristic suitable for measuring turbidity. The interference of the yellow color of suspensions in measurements of turbidity was eliminated in the green channel. A correlation equation was found for the contrast (degree of turbidity) and concentration of the suspension. The equation does not differ from that of the law of light absorption. Performance characteristics of the determination of the kaolin turbidity of water were estimated in comparison with those of conventional turbidimetry. It was shown that, despite the primitiveness of the instrumentation for the proposed method of photographic turbidimetry, its characteristics are not inferior to those of classical turbidimetry.  相似文献   

12.
混凝沉淀法处理工业含氟废水的工艺研究   总被引:4,自引:0,他引:4  
周霖  张彰  方瑜 《化学研究》2010,21(5):54-57,62
以半导体工业中的含氟废水为研究对象,采用混凝沉淀法对去除废水中氟离子进行了系统的工艺研究.以Ca(OH)2为沉淀剂,分别用聚合氯化铁(PFC)和聚合氯化铝(PAC)为混凝剂,并加入聚丙烯酰胺(PAM)助凝剂的方法,对药剂投加量、混凝剂种类、体系pH值、沉降时间等因素进行了实验探索.结果显示,PFC比PAC混凝效果好.当Ca(OH)2添加量为理论值的2.5倍,PFC用量为15mg/L,助凝剂PAM用量为4mg/L,体系的pH值在6~7时,其除氟效果最佳,此时废水中残留氟离子浓度可降低至5.5mg/L,远远低于国家规定的排放标准(10mg/L).  相似文献   

13.
Biofouling on reverse osmosis (RO) membranes is the most serious problem which affects desalination process efficiency and increases operation cost. The biofouling cannot be effectively removed by the conventional pre-treatment traditionally used in desalination plants. Hybrid membrane systems coupling the adsorption and/or coagulation with low-pressure membranes can be a sustainable pre-treatment in reducing membrane fouling and at the same time improving the feed water quality to the seawater reverse osmosis. The addition of powder activated carbon (PAC) of 1.5 g/L into submerged membrane system could help to remove significant amount of both hydrophobic compounds (81.4%) and hydrophilic compounds (73.3%). When this submerged membrane adsorption hybrid system (SMAHS) was combined with FeCl(3) coagulation of 0.5 mg of Fe(3+)/L, dissolved organic carbon removal efficiency was excellent even with lower dose of PAC (0.5 g/L). Detailed microbial studies conducted with the SMAHS and the submerged membrane coagulation-adsorption hybrid system (SMCAHS) showed that these hybrid systems can significantly remove the total bacteria which contain also live cells. As a result, microbial adenosine triphosphate (ATP) as well as total ATP concentrations in treated seawater and foulants was considerably decreased. The bacteria number in feed water prior to RO reduced from 5.10E(+06) cells/mL to 3.10E(+03) cells/mL and 9.30E(+03) cells/mL after SMAHS and SMCAHS were applied as pre-treatment, respectively. These led to a significant reduction of assimilable organic carbon (AOC) by 10.1 μg/L acetate-C when SMCAHS was used as a pre-treatment after 45-h RO operation. In this study, AOC method was modified to measure the growth of bacteria in seawater by using the Pseudomonas P.60 strain.  相似文献   

14.
Chemical coagulation has been widely used as a method to mitigate membrane fouling in MF/UF membranes used for drinking water treatment. Optimization of coagulation as pre-treatment of membrane processes has not been achieved yet: the optimum condition of coagulation for conventional treatment systems is not necessarily applicable to membrane-based treatment systems. This study investigated (physically) irreversible membrane fouling in an MF membrane used with pre-coagulation by aluminum salt. In a series of bench-scale filtration tests, feed water containing commercially available humic acid or organic matter isolated from surface water was coagulated with polyaluminum chloride (PACl) under various conditions and subsequently filtered with an MF membrane with the nominal pore size of 0.1 μm. It was found that coagulation conditions had great impacts on the degree of physically irreversible fouling. Acidic conditions improved the quality of treated water but generally caused greater physically irreversible fouling than did neutral or alkaline conditions. Also, dosage of coagulant was found to be influential on the degree of membrane fouling: high dosage of coagulant frequently caused more severe irreversible fouling. Sizes of flocs seemed to become small under acidic conditions in this study, which was indicated by high concentrations of aluminum in the permeate under acidic conditions. It is thought that small flocs produced under acidic conditions could migrate into micropores of the membrane and caused physically irreversible fouling by plugging or adsorption. These findings obtained in the bench-scale tests were verified in a long-term pilot-scale test.  相似文献   

15.
In this paper, a submerged membrane adsorption bioreactor (MABR) was evaluated for drinking water treatment at a hydraulic retention time (HRT) as short as 0.5 h. As powdered activated carbon (PAC) was added to the bioreactor at 8 mg/L raw water, the MABR achieved much higher removal efficiency for organic matter in the raw water than the parallel-operated membrane bioreactor (MBR). Moreover, the trans-membrane pressure (TMP) of MABR developed much lower than that of MBR, demonstrating PAC in MABR could mitigate membrane fouling. It was also identified here that the removal of dissolved organic matter (DOM) in MABR was accomplished through the combination of three unit effects: rejection by ultrafiltration (UF) membrane, biodegradation by microorganism, and adsorption by PAC; the last was of great importance. A sludge layer was observed on the membranes surface in both MABR and MBR and PAC particles themselves constituted a part of the cake layer and helped to intercept DOM in the mixed liquor by adsorption in MABR, especially for organic molecules of 5000–500 Da. The UF membrane together with the sludge layer and PAC layer in the MABR was able to reject hydrophobic bases (HoBs), hydrophobic neutrals, hydrophobic acids (HoAs), weakly hydrophobic acids (WHoAs) and hydrophilic matter (HiM) in the mixed liquor by 40.0%, 43.9%, 71.8%, 56.6% and 35.9%, respectively.  相似文献   

16.
《中国化学快报》2020,31(6):1545-1549
The effects of bisulfite-activated permanganate technology(PM/BS) as a pre-oxidation process on enhancing Microcystis aeruginosa(M.aeruginosa) removal by post coagulation were investigated.The results demonstrated that pretreatment with PM/BS process effectively promoted the algae removal by coagulation with Al_2(SO_4)_3 as the coagulant and this phenomenon was more obvious with the increase of water hardness.Compared to the sole coagulation,PM/BS pre-oxidation combing with coagulation could neutralize the zeta potential of algal cells effectively,decrease the algal cell size,and lead to the formation of more compact flocs due to the in-situ generated Mn02.The effect of oxidant dosages on algal organic matter(AOM) was also studied and no obvious release of macromolecular substances was observed with the dosage of KMn04 increasing from 3.0 mg/L to 7.0 mg/L,suggesting the integrity of algal cells at a high KMn04 dosage.Moreover,PM/BS pre-oxidation could lead to the decrease of most analyzed disinfection by-products(DBPs) at a Al_2(SO_4)_3 dosage of 40.0 mg/L.The algae removal efficiency was also significantly enhanced by PM/BS pre-oxidation in the test using real algae-laden water.This study indicated that PM/BS process might be a potential assistant technology for algae removal by subsequent coagulation.  相似文献   

17.
The impact of in-line coagulation pre-treatment of secondary effluent on the operation of an immersed hollow-fibre ultrafiltration membrane pilot was evaluated as part of a larger study on optimising phosphorus removal. The efficacy of alum and ferric chloride was investigated, with an emphasis on alum use. Both coagulants were found to shift the particle-size distribution of organic matter in the feed towards larger fractions, with a notable reduction in colloidal matter. This was reflected in a reduction of both average daily transmembrane pressure increases, as well as a reduction of transmembrane pressure increases within backpulse intervals. Fouling reduction was observed with both lower and higher membrane packing density modules (membrane surface areas of 55.7 and 62.7 m2/module). The results of one-way analysis of variance (ANOVA) testing indicate that for this pilot system, chemical pre-treatment and solids concentrations in the feed water played a statistically significant role in determining transmembrane pressure variations. Membrane packing density and membrane production method did not exhibit a statistically significant effect on transmembrane pressure under the conditions of this study.  相似文献   

18.
The presence of inorganic and organic substances may alter the physicochemical properties of iron (Fe) salt precipitates, thereby stabilizing the antimony (Sb) oxyanions in potable water during the chemical treatment process. Therefore, the present study aimed to examine the surface characteristics, size of Fe flocs and coagulation performance of Sb oxyanions under different aqueous matrices. The results showed that surface properties of Fe flocs significantly varies with pH in both Sb(III, V) suspensions, thereby increasing the mobility of Sb(V) ions in alkaline conditions. The negligible change in surface characteristics of Fe flocs was observed in pure water and Sb(III, V) suspension at pH 7. The key role of Van der Waals forces of attraction as well as hydration force in the aggregation of early formed flocs were found, with greater agglomeration capability at higher more ferric chloride dosage. The higher Sb(V) loading decreased the size of Fe flocs and reversed the surface charge of precipitates, resulting in a significant reduction in Sb(V) removal efficiency. The competitive inhibition effect on Sb(III, V) removal was noticed in the presence of phosphate anions, owing to lowering of ζ-potential values towards more negative trajectory. The presence of hydrophobic organic matter (humic acid) significantly altered the surface characteristics of Fe flocs, thereby affecting the coagulation behavior of Sb in water as compared to the hydrophilic (salicylic acid). Overall, the findings of this research may provide a new insight into the variation in physicochemical characteristics of Fe flocs and Sb removal behavior in the presence of inorganic and organic compounds during the drinking water treatment process.  相似文献   

19.
This study has demonstrated that As(III) can be electrochemically detected and quantified in the presence of fulvic acid (FA) and dissolved organic matter (DOM). This eliminates the need to remove DOM prior to measurement of As(III) in environmental samples. Apart from reducing analysis time and the cost of the analysis, this could be potentially useful for the development of electrochemical methods for the detection and measurement of As(III) onsite. Both synthetic samples in which FA was added and a real sample with 22.16 mg/L total organic carbon (TOC) were analyzed.  相似文献   

20.
摘 要:建立了硫酸、过氧化氢湿法消解、ICP-AES测定铑派克洗水铑的含量的分析方法。确定了硫酸碳化有机物,过氧化氢溶解煮沸,氢氟酸除硅,于4mol/L盐酸体系,碲共沉淀富集铑,10%盐酸介质,电感耦合等离子体发射光谱仪测定铑量。在选定条件下,测定含铑有机物洗水中0.0003 g/L~0.010 g/L的铑,相对标准偏差(RSD,n=7)和加标回收率分别为:铑0.545%~2.91%和99.62%%~100.55%。。方法准确、快速、简便,测定结果与火试金富集分析方法结果吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号