首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large eddy simulations were performed and Lighthill's analogy applied in order to predict the noise induced by the flow of a turbulent boundary layer (ReD = 12,000 or Reθ = 300) over an open cavity (length/depth = 1). The effects of three simple geometrical changes, namely lids at the upstream edge (C10 and C20) and a chamfered edge (C23) on the downstream side of the cavity, on the internal circulation flows and shear-layer flow oscillations were determined and their effectiveness in reducing flow-induced noise was assessed. These small modifications were found to weaken the circulating flows inside the cavity and to suppress the pressure fluctuations near its downstream edge. As the lid length increases, the turbulence intensity inside the cavity is suppressed. The acoustic sources are concentrated at the downstream edge. The wall pressure fluctuations at the fundamental frequency are slightly higher for C23. The energy densities at the fundamental frequency are lower by 87.5% (C10), 30% (C20), and 18.7% (C23) than that of C00. The contributions to the acoustic directivity patterns of the dipole and quadrupole sources are oriented toward 135 and 45° respectively. The ratios of decrease of the dipole and quadrupole sources are 93% (C10), 39% (C20), and 23% (C23) with respect to C00.  相似文献   

2.
In this work a modified version of the Lighthill–Curle's analogy is applied to study the near field acoustics of an upstream laminar flow past an open cavity. Three incompressible cases have been computed and are compared against the corresponding compressible results. The three incompressible cases are carried out with different time-step sizes, distances from the cavity trailing edge to the outlet and spatial resolution in the streamwise direction. The aim of the work is to study the differences in compressible and incompressible sources in Lighthill–Curle's equation and their influence on the sound radiated. To cite this article: J. Ask, L. Davidson, C. R. Mecanique 333 (2005).  相似文献   

3.
导弹水下发射燃气泡计算   总被引:27,自引:1,他引:27  
采用一维非定常气流场模型和轴对称理想水流场模型,对水下发射导弹的尾部非定常燃气泡内外流场进行了耦合数值求解。考虑了高温燃气与水介质之间的传热、汽化等对泡内气体流动的影响,数值模拟了燃气泡的生长和脱落过程,揭示了燃气泡中气体流动的基本规律,计算了燃气泡发展对导弹所受水动力的影响。  相似文献   

4.
Hypersonic flow transition from laminar to turbulent due to the surface irregularities, like local cavities, can greatly affect the surface heating and skin friction. In this work, the hypersonic flows over a three-dimensional rectangular cavity with length-to-width-to-depth ratio, L:W:D, of 19.9:3.57:1 at two angles of attack (AoA) were numerically studied with Improved-Delayed-Detached-Eddy Simulation (IDDES) method to highlight the mechanism of transition triggered by the cavity. The present approach was firstly applied to the transonic flow over M219 rectangular cavity. The results, including the fluctuating pressure and frequency, agreed with experiment well. In the hypersonic case at Mach number about 9.6 the cavity is seen as “open” at AoA of −10° but “closed” at AoA of −15° unconventional to the two-dimensional cavity case where the flow always exhibits closed cavity feature when the length-to-depth ratio L/D is larger than 14. For the open cavity flow, the shear layer is basically steady and the flow maintains laminar. For the closed cavity case, the external flow goes into the cavity and impinges on the bottom floor. High intensity streamwise vortices, impingement shock and exit shock are observed causing breakdown of these vortices triggering rapid flow transition.  相似文献   

5.
Shear flow past a deep cavity can generate self-sustained oscillations, including locked-on flow tones, due to coupling between the inherent instability of the separated shear layer and an acoustic mode of the cavity resonator. This investigation focuses on the dimensionless pressure amplitude response within a deep cavity, as a function of the streamwise length of the cavity opening; for each length, the pressure response is characterized over a wide range of dimensionless inflow velocity. Criteria for locked-on flow tones are assessed. They include a measure of the strength of lock-on, SoL and the quality factor Q. All self-excited oscillations are assessed using both of these criteria, in order to interpret dimensionless forms of the fluctuation pressure amplitude. The dimensionless pressure amplitude response of the cavity involves several successive regimes, due to variations of streamwise length L of the cavity opening. These regimes are defined in relation to L/θ, where θ is the momentum thickness of the inflow boundary layer. Below a minimum value of L/θ, flow tones cannot be generated. Furthermore, these regimes are defined in terms of the possible hydrodynamic modes (stages) of the unsteady shear layer and the acoustic modes of the deep cavity.  相似文献   

6.
The results of an experimental investigation of the flow over an annular cavity in a cylindrical body are presented; the cavity-to-body diameter ratio was 0.7 and the incident flow Mach number was 2.84. Using the data on the pressure distribution and optical measurements of the flow pattern, the structure of the flow inside the cavity was studied on the relative cavity length range from 0.5 to 14 including the regimes with both open and closed separation zones.  相似文献   

7.
《力学快报》2020,10(5):354-365
This paper deals with a numerical study of weak shock-waves propagation and their attenuation in channel flow having different heights and exhibiting a hollow circular cavities with different depths and diffraction angles inside. The effect of initial diffraction angle and cavity depth on the shock mitigation is investigated. A better shock attenuation is achieved with diffraction angle θw = 90° by a factor of approximately 17% in terms of shock-Mach number and 38% in terms of total energy. The obtained results show also, in addition to the initial diffraction angle and cavity depth, the importance of reducing the channel heights as well as the position of the reduced section in achieving an optimal shock-wave attenuation. The presence of a cavity inside the channel helps to attenuate faster the shock wave. The underlying physics relies on the shock diffraction phenomenon that generates large amount of vortical structures capable of dissipating part of the shock energy by inducing a pressure loss behind it. A subtle arrangement of channel position/height and a cavity location leads to an efficient pressure attenuation by approximately a factor of 57% for Ms = 1.6 and 16% for Ms = 1.1.  相似文献   

8.
Natural convective flow and heat transfer in an inclined quadrantal cavity is studied experimentally and numerically. The particle tracing method is used to visualize the fluid motion in the enclosure. Numerical solutions are obtained via a commercial CFD package, Fluent. The working fluid is distilled water. The effects of the inclination angle, ? and the Rayleigh number, Ra on fluid flow and heat transfer are investigated for the range of angle of inclination between 0° ? ? ? 360°, and Ra from 105 to 107. It is disclosed that heat transfer changes dramatically according to the inclination angle which affects convection currents inside, i.e. flow physics inside. A fairly good agreement is observed between the experimental and numerical results.  相似文献   

9.
The flow past a cylindrical cavity on an axisymmetric body in the range of Mach numbers from 0.6 to 1.18 and the effect of the Mach number in the transition from subsonic to supersonic flow velocities are studied experimentally. In addition, a broad, 5.3—11.3 range of relative elongations of the cavity which permits one to determine the influence of the elongation on flow regimes including flows with closed and open separation zones is studied.  相似文献   

10.
The flow in a lid-driven cavity with width-to-height ratio of 1.6 is investigated numerically and experimentally. Experimental investigation use an apparatus with a spanwise length-to-height ratio of $\Uplambda = 10.85.$ Λ = 10.85 . Increasing the Reynolds number, we experimentally find a gradual change from the quasi-two-dimensional basic flow to a three-dimensional flow pattern. The three-dimensional flow has a significant amplitude at considerably low Reynolds numbers. Streak-line photographs and PIV vector maps are presented to illustrate the structure of the finite-amplitude flow pattern. The smooth transition is in contrast to the linear instability predicted by a linear-stability analysis for a cavity with infinite span. LDV measurements confirm the absence of a distinct threshold Reynolds number and indicate an imperfect bifurcation. The deviations between experimental observations and numerical critical Reynolds number for infinite span are explained by conducting three-dimensional simulations for a finite-span geometry. A good agreement between experimental and numerical simulation is obtained. The numerical and experimental data lead to the conjecture of a premature onset of the three-dimensional flow caused by strong secondary flows which are induced by the cavity end walls. Nevertheless, the flow structure in the finite-span cavity carries the same characteristic signatures as the nonlinear flow in the corresponding infinite-length cavity. We conclude that the observed flow can be identified as the continuation of the normal mode C e 4 earlier identified in a linear-stability analysis.  相似文献   

11.
This paper presents an experimentally study of the bifurcation of steady-state air convection in a cubic cavity heated from below under controlled deviations from equilibrium heating conditions due to a slow quasisteady-state tilt of the cavity at a predetermined angle α. It is found that in the supercritical range of Rayleigh numbers Ra at a tilt of the cavity not exceeding 7°, the existence of two stable steady-state convection regimes (normal and anomalous) with circulation in opposite directions is possible. A study is made of the transformations of the temperature distribution in the middle (with respect to the planes in which heat exchangers are located) plane during transition from the anomalous flow regime to the normal regime by instantaneous rotation of the entire mass of air in the cavity around the vertical axis by an angle of 90 to 135°. It is shown that this rotation occurs when the tilt of the cavity exceeds a critical value α cr(Ra), which was determined experimentally for Rayleigh numbers 0 < Ra < 25Racr, where Racr is the critical Rayleigh number for stability of mechanical equilibrium for heating from below.  相似文献   

12.
Tip leakage aerodynamics over stepped squealer tips in a turbine cascade   总被引:3,自引:0,他引:3  
Tip gap flow physics and aerodynamic loss generations for two stepped squealer tips of a “Higher Pressure-side rim and Lower Suction-side rim” (HPLS) tip and a “Lower Pressure-side rim and Higher Suction-side rim” (LPHS) tip have been investigated in a turbine cascade. For a fixed tip gap height-to-chord ratio of h/c = 2.0%, oil film flow visualizations are performed on the casing wall as well as on the cavity floor, and three-dimensional flow fields downstream of the cascade are measured with a five-hole probe. For the HPLS tip, the leakage inflow over the pressure-side rim cannot reach the suction-side rim in the upstream region due to the presence of an inlet flow intrusion, and there exists a strong near-wall flow heading toward the trailing edge all over the cavity floor. On the other hand, the LPHS tip has a mid-chord leakage flow penetration into the blade flow passage, and also provides a downstream leakage flow penetration deeper than that for the HPLS tip. Its cavity floor can be divided into a backward flow region and a wide separation bubble. Aerodynamic loss for the HPLS tip, which is nearly identical to that for the cavity squealer tip, is lower than those for the LPHS and plane tips in a considerable degree.  相似文献   

13.
We consider a flow of a viscous incompressible heat-conducting fluid over a cubic cavity. The heat transfer on the bottom of the cavity rotated at an angle to the free stream is studied numerically. The numerical algorithm includes a finite-difference approximation in the spatial coordinates, a semi-implicit time integration method, and a modified version of an iterative stabilized method of biconjugate gradients with an algebraic multigrid preconditioner for solving the Poisson equation. The algorithm is designed for the use of multiprocessor computers. Two different inlet flow conditions are considered: a steady-state flow and a steady flow with superimposed periodic perturbations. In the first case, it is shown that the integral heat transfer rate increases monotonically with increase in the cavity rotation angle α. For α = 45°, the increase in the heat flux amounts to 20%. The presence of periodic disturbances may result in up to 3-fold increase in the integral heat transfer rate as compared to the case of the steady-state inlet flow. The enhancement of heat transfer occurs when the frequency of the inlet flow disturbances is close to the frequency of unstable modes of the mixing layer formed at the upper boundary of the cavity.  相似文献   

14.
For the two cavity models whose upward and downward wall heights are different from each other, laminar heat transfer is studied numerically in a finite difference method. The effects of cavity configuration, free-stream velocity and buoyancy force on flow and temperature fields as well as heat transfer at the bottom surface are discussed. The flow pattern of DOF (Downward-Facing cavity)-model is more intricated than that of UPF (Upward-Facing cavity)-model, depending on the aspect ratio of cavity or main flow velocity. The mean Nusselt numberNu m at the bottom surface of both cavity models tends generally to increase with increasing ReHorGr w/Re H 2 . However, in the flow region ofRe H & 500 for DOF-cavity, theNu m for 0.4 ≦ D2/D1 0.6 is somewhat lower than that obtained from the other cavities and does not always increase with increasingRe H.  相似文献   

15.
The transient natural convection in a fluid contained in a rectangular enclosure, the wall of which is maintained at a uniform temperature which changes at a steady rate, is approached by a numerical method. Numerical solutions are obtained forPr=0.73, 7.3 and 73 and a range of Rayleigh numbersRa=102 ~ 108. At relatively low Rayleigh numbers the flow is characterized by the development of double cells with flow up the center and down the sidewalk However it was found that an increase of the Rayleigh number leads to the development of strong secondary circulation on the axis of symmetry of the cavity near the top wall. Thus, as the Rayleigh number is increased the secondary cells grow in size. The effects of the secondary cells on the temperature field and heat transfer coefficients are discussed. Most results are obtained for the case of a square cavity (E=2) but the influence of the aspect ratio of the cavity is also studied forE=1 and 4.  相似文献   

16.
Self-sustained oscillatory phenomena in confined flow may occur when a turbulent plane jet is discharging into a rectangular cavity. An experimental set-up was developed and the flow analysis has been made using mainly hot-wire measurements, which were complemented by visualisation data. Previous studies confirmed that periodic oscillations may occur, depending on the location of the jet exit nozzle inside the cavity, and also the distance between the side-walls. The present study deals with the symmetrical interaction between a turbulent plane jet and a rectangular cavity and the influence of the geometrical characteristics of the cavity on the oscillatory motion. The size and aspect ratio of the cavity were varied together with the jet width compared to that of the cavity. The study is carried out both numerically and experimentally. The numerical method solves the unsteady Reynolds averaged Navier–Stokes equations (URANS) together with the continuity equation for an incompressible fluid. The closure of the flow equations system is achieved using a two-scale energy-flux model at high Reynolds number in the core flow coupled with a wall function treatment in the vicinity of the wall boundaries. The fundamental frequency of the oscillatory flow was found to be practically independent of the cavity length. Moreover, the oscillations are attenuated as the cavity width increases, until they disappear for a critical value of the cavity width. Contour maps of the instantaneous flow field are drawn to show the flow pattern evolution at the main phases of oscillation. They are given for several aspect ratios of the cavity, keeping constant values for the cavity width and the jet thickness. The proposed approach may help to investigate further the oscillation mechanisms and the entrainment process occurring in pressure driven jet–cavity interactions.  相似文献   

17.
The vibration of an elastic wing with an attached cavity in periodically perturbed flows is analyzed. Because the cavity thickness and length L also are perturbed, an excitation with a fixed frequency ω leads to a parametric vibration of the wing, and the amplitudes and spectra of its vibration have nonlinear dependencies on the amplitude of the perturbation. Numerical analysis was carried out for a two-dimensional flow of ideal fluid. Wing vibration was described by means of the beam equation. As a result, two frequency bands of a significant vibration increase were found. A high-frequency band is associated mainly with an elastic resonance of the wing, and a cavity can add a certain damping. A low-frequency band is associated with cavity-volume oscillations. The governing parameter for the low-frequency vibration is the cavity length-based Strouhal number StC=ωL/U, where U is the free-stream speed. The most significant vibration in the low-frequency band corresponds to approximately constant values of ShCand has the most extensive subharmonics.  相似文献   

18.
A direct numerical simulation is presented for the unsteady flow over a two-dimensional cavity at a Mach number of 0.5. The incoming flow is a laminar, subsonic boundary layer. Two values of the principal parameter L/δθ , where L is the cavity length and δθ the momentum thickness of the boundary layer, have been studied. The feedback mechanisms which induce self-sustained oscillations in the cavity have been well captured and two flow regimes were pointed out. The corresponding acoustic responses are specified in terms of the wall pressure in the cavity and the radiated acoustic field.  相似文献   

19.
In this paper large-eddy simulation is used to study buoyancy-induced flow in a rotating cavity with an axial throughflow of cooling air. This configuration is relevant in the context of secondary air systems of modern gas turbines, where cooling air is used to extract heat from compressor disks. Although global flow features of these flows are well understood, other aspects such as flow statistics, especially in terms of the disk and shroud boundary layers, have not been studied. Here, previous work for a sealed rotating cavity is extended to investigate the effect of an axial throughflow on flow statistics and heat transfer. Time- and circumferentially-averaged results reveal that the thickness of the boundary layers forming near the upstream and downstream disks is consistent with that of a laminar Ekman layer, although it is shown that the boundary layer thickness distribution along the radial direction presents greater variations than in the sealed cavity case. Instantaneous profiles of the radial and azimuthal velocities near the disks show good qualitative agreement with an Ekman-type analytical solution, especially in terms of the boundary layer thickness. The shroud heat transfer is shown to be governed by the local centrifugal acceleration and by a core temperature, which has a weak dependence on the value of the axial Reynolds number. Spectral analyses of time signals obtained at selected locations indicate that, even though the disk boundary layers behave as unsteady laminar Ekman layers, the flow inside the cavity is turbulent and highly intermittent. In comparison with a sealed cavity, cases with an axial throughflow are characterised by a broader range of frequencies, which arise from the interaction between the laminar jet and the buoyant flow inside the cavity.  相似文献   

20.
This paper reports on the results of a numerical study of convection flow and heat transfer in a rectangular porous cavity filled with a phase change material under steady state conditions. The two vertical walls of the cavity are subject respectively to temperatures below and above the melting point of the PCM while adiabatic conditions are imposed on the horizontal walls. The porous medium is characterized by an anisotropic permeability tensor with the principal axes arbitrarily oriented with respect to the gravity vector. The problem is governed by the aspect ratioA, the Rayleigh numberRa, the anisotropy ratioR and the orientation angle θ of the permeability tensor. Attention is focused on these two latter parameters in order to investigate the effects of the anisotropic permeability on the fluid flow and heat transfer of the liquid/solid phase change process. The method of solution is based on the control volume approach in conjunction with the Landau-transformation to map the irregular flow domain into a rectangular one. The results are obtained for the flow field, temperature distribution, interface position and heat transfer rate forA=2.5,Ra=40, 0≤θ≤π, 0.25≤R≤4. It was found that the equilibrium state of the solid/liquid phase change process may be strongly influenced by the anisotropy ratioR as well as by the orientation angle θ of the permeability tensor. First, for a given set of parametersA,Ra andR, there exists an optimum orientation θmax for which the flow strength, the liquid volume and the heat transfer rate are maximum. There also exists an orientation θminmax+π/2 for which these quantities are minimum. Second, when an anisotropic medium is oriented along the optimum direction θmax, an increase of the permeability component along that direction will increase the flow and heat transfer rate in a same order while an increase of the other permeability component only has a negligible effect. For the parameter ranges considered in the present study, it was found that the optimum direction is lying between the gravity vector and the dominant flow direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号