首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two‐dimensional incompressible jet development inside a duct has been studied in the laminar flow regime, for cases with and without entrainment of ambient fluid. Results have been obtained for the flow structure and critical Reynolds number values for steady asymmetric jet development and for the onset of temporal oscillations, at various values of the duct‐to‐jet width ratio (aspect ratio). It is found that at low aspect ratios and Reynolds numbers, jet development inside the duct is symmetric. For larger aspect ratios and Reynolds numbers, the jet flow at steady state becomes asymmetric with respect to the midplane, and for still higher values, it becomes oscillatory with respect to time. When entrainment is present, the instabilities of asymmetric development and temporal oscillations occur at a much higher critical Reynolds number for a given aspect ratio, indicating that the stability of the jet flow is higher with entrainment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
The present work is devoted to the experimental and numerical study ofthe interaction of a turbulent plane jet with a rectangular cavity.Several flow regimes have been found to occur: the non-oscillationregime, the stable oscillation regime and an unstable oscillationregime. The first two regimes have been particularly considered. Theexperimental study has been carried out using hot wire anemometry andsome visualisations. The numerical predictions based on statisticalmodelling have been made using on the one hand the standard k– model and on the other hand a two-scales split spectrum model. The structuralproperties of the flow have been described for the different situations.For the oscillatory regime, a parametrical study allowed to determinethe influence of the jet exit location and the Reynolds number on thefrequency of the jet flapping. The one point closures have been able topredict the oscillatory regime, and in particular the two-scales modelled to improved results because better account is taken of lag effectsin unsteady non-equilibrium situations.  相似文献   

3.
Flow structure of momentum-dominated helium jets discharged vertically into ambient air was investigated using a high-speed rainbow schlieren deflectometry (RSD) apparatus operated at up to 2,000 Hz. The operating parameters, i.e., Reynolds number and Richardson number were varied independently to examine the self-excited, flow oscillatory behavior over a range of experimental conditions. Measurements revealed highly periodic oscillations in the laminar region at a unique frequency as well as high regularity in the flow transition and initial turbulent regions. The buoyancy was shown to affect the oscillation frequency and the distance from the jet exit to the flow transition plane. Instantaneous helium concentration contours across the field of view revealed changes in the jet flow structure and the evolution of the vortical structures during an oscillation cycle. A cross-correlation technique was applied to track the vortices and to find their convection velocity. Time traces of helium concentration at different axial locations provided detailed information about the oscillating flow.  相似文献   

4.
Unsteady supersonic turbulent gas flow over a plane cavity is simulated numerically. The solution is determined by means of the joint integration of the Reynolds equations and the two-parameter turbulence model using the law of the wall. The calculation results obtained for various cavity trailing edge contours are considered. The strong effect of the geometry of the trailing edge on the flow parameter fluctuation intensity is demonstrated. A surface shape which makes it possible considerably to reduce these oscillations is determined.  相似文献   

5.
This paper investigates the layered structure of a turbulent plane wall jet at a distance from the nozzle exit. Based on the force balances in the mean momentum equation, the turbulent plane wall jet is divided into three regions: a boundary layer-like region (BLR) adjacent to the wall, a half free jet-like region (HJR) away from the wall, and a plug flow-like region (PFR) in between. In the PFR, the mean streamwise velocity is essentially the maximum velocity, and the simplified mean continuity and mean momentum equations result in a linear variation of the mean wall-normal velocity and Reynolds shear stress. In the HJR, as in a turbulent free jet, a proper scale for the mean wall-normal flow is the mean wall-normal velocity far from the wall and a proper scale for the Reynolds shear stress is the product of the maximum mean streamwise velocity and the velocity scale for the mean wall-normal flow. The BLR region can be divided into four sub-layers, similar to those in a canonical pressure-driven turbulent channel flow or shear-driven turbulent boundary layer flow. Building on the log-law for the mean streamwise velocity in the BLR, a new skin friction law is proposed for a turbulent wall jet. The new prediction agrees well with the correlation of Bradshaw and Gee (1960) over moderate Reynolds numbers, but gives larger skin frictions at higher Reynolds numbers.  相似文献   

6.
The current study is focused on examining the effect of the cavity width and side walls on the self-sustained oscillation in a low Mach number cavity flow with a turbulent boundary layer at separation. An axisymmetric cavity geometry is employed in order to provide a reference condition that is free from any side-wall influence, which is not possible to obtain with a rectangular cavity. The cavity could then be partially filled to form finite-width geometry. The unsteady surface pressure is measured using microphone arrays that are deployed on the cavity floor along the streamwise direction and on the downstream wall along the azimuthal direction. In addition, velocity measurements using two-component Laser Doppler Anemometer are performed simultaneously with the array measurements in different azimuthal planes. The compiled data sets are used to investigate the evolution of the coherent structures generating the pressure oscillation in the cavity using linear stochastic estimation of the velocity field based on the wall-pressure signature on the cavity end wall. The results lead to the discovery of pronounced harmonic pressure oscillations near the cavity’s side walls. These oscillations, which are absent in the axisymmetric cavity, are linked to the establishment of a secondary mean streamwise circulating flow pattern near the side walls and the interaction of this secondary flow with the shear layer above the cavity.  相似文献   

7.
The free surface dynamics and sub-surface flow behavior in a thin (height and width much larger than thickness), liquid filled, rectangular cavity with a submerged bifurcated nozzle were investigated using free surface visualization and particle image velocimetry (PIV). Three regimes in the free surface behavior were identified, depending on nozzle depth and inlet velocity. For small nozzle depths, an irregular free surface is observed without clear periodicities. For intermediate nozzle depths and sufficiently high inlet velocities, natural mode oscillations consistent with gravity waves are present, while at large nozzle depths long term self-sustained asymmetric oscillations occur.For the latter case, time-resolved PIV measurements of the flow below the free surface indicated a strong oscillation of the direction with which each of the two jets issue from the nozzle. The frequency of the jet oscillation is identical to the free surface oscillation frequency. The two jets oscillate in anti-phase, causing the asymmetric free surface oscillation. The jets interact through a cross-flow in the gaps between the inlet channel and the front and back walls of the cavity.  相似文献   

8.
In this research, the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three-dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k–e{\varepsilon} model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at the jet centerline are noted. The velocity vectors of the main flow and the secondary flow are illustrated. Also, effect of aspect ratio on mixing in rectangular cross-section jets is considered. The aspect ratios that were considered for this work were 1:1 to 1:4. The results showed that the jet entrains more with smaller AR. Special attention has been drawn to the influence of the Reynolds number (based on hydraulic diameter) as well as the inflow conditions on the evolution of the rectangular jet. An influence on the jet evolution is found for smaller Re, but the jet is close to a converged state for higher Reynolds numbers. The inflow conditions have considerable influence on the jet characteristics.  相似文献   

9.
Experiments have been undertaken to investigate the natural convection of air in a tall differentially heated rectangular cavity (2.18 m high by 0.076 m wide by 0.52 m in depth). They were performed with temperature differentials between the vertical plates of 19.6°C and 39.9°C, giving Rayleigh numbers based on the width of 0.86×106 and 1.43×106. Under these conditions the flow in the core of the cavity is fully turbulent and property variations with temperature are comparatively small. A previously used experimental rig has been modified, by fitting partially conducting top and bottom walls and outer guard channels, to provide boundary conditions which avoid the inadequately defined sharp changes in temperature gradient and other problems associated with insufficient insulation on nominally adiabatic walls. Mean and turbulent temperature and velocity variations within the cavity have been measured, together with heat fluxes and turbulent shear stresses. The temperature and flow fields were found to be closely two-dimensional, except close to the front and back walls, and anti-symmetric across the diagonal of the cavity. The partially conducting roof and floor provide locally unstable thermal stratification in the wall jet flows there, which enhances the turbulence as the flow moves towards the temperature controlled plates. The results provide a greatly improved benchmark for the testing of turbulence models in this low turbulence Reynolds number flow.  相似文献   

10.
A Reynolds stress model for the numerical simulation of uniform 3D turbulent open‐channel flows is described. The finite volume method is used for the numerical solution of the flow equations and transport equations of the Reynolds stress components. The overall solution strategy is the SIMPLER algorithm, and the power‐law scheme is used to discretize the convection and diffusion terms in the governing equations. The developed model is applied to a flow at a Reynolds number of 77000 in a rectangular channel with a width to depth ratio of 2. The simulated mean flow and turbulence structures are compared with measured and computed data from the literature. The computed flow vectors in the plane normal to the streamwise direction show a small vortex, called inner secondary currents, located at the juncture of the sidewall and the free surface as well as the free surface and bottom vortices. This small vortex causes a significant increase in the wall shear stress in the vicinity of the free surface. A budget analysis of the streamwise vorticity is carried out. It is found that both production terms by anisotropy of Reynolds normal stress and by Reynolds shear stress contribute to the generation of secondary currents. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
An experimental study was conducted of incompressible, moderate Reynolds number flow of air over heated rectangular blocks in a two-dimensional, horizontal channel. Holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in self- sustained oscillatory flow. Experiments were conducted in the laminar, transitional and turbulent flow regimes for Reynolds numbers in the range from Re = 520 to Re = 6600. Interferometric measurements were obtained in the thermally and fluiddynamically periodically fully developed flow region on the ninth heated block. Flow oscillations were first observed between Re = 1054 and Re = 1318. The period of oscillations, wavelength and propagation speed of the Tollmien–Schlichting waves in the main channel were measured at two characteristic flow velocities, Re = 1580 and Re = 2370. For these Reynolds numbers it was observed that two to three waves span one geometric periodicity length. At Re = 1580 the dominant oscillation frequency was found to be around 26 Hz and at Re = 2370 the frequency distribution formed a band around 125 Hz. Results regarding heat transfer and pressure drop are presented as a function of the Reynolds number, in terms of the block-average Nusselt number and the local Nusselt number as well as the friction factor. Measurements of the local Nusselt number together with visual observations indicate that the lateral mixing caused by flow instabilities is most pronounced along the upstream vertical wall of the heated block in the groove region, and it is accompanied by high heat transfer coefficients. At Reynolds numbers beyond the onset of oscillations the heat transfer in the grooved channel exceeds the performance of the reference geometry, the asymmetrically heated parallel plate channel. Received on 26 April 2000  相似文献   

12.
An innovative method is presented for control of an oscillatory turbulent jet in a thin rectangular cavity with a thickness to width ratio of 0.16. Jet flow control is achieved by mass injection of a secondary jet into the region above the submerged primary jet nozzle exit and perpendicular to the primary nozzle axis. An experimental model, a 2-D and a 3-D computational fluid dynamics (CFD) model are used to investigate the flow characteristics under various secondary injection mass flow rates and injection positions. Two-dimensional laser Doppler anemometry (LDA) measurements are compared with results from the CFD models, which incorporate a standard kε turbulence model or a 2-D and 3-D realisable kε model. Experimental results show deflection angles up to 23.3° for 24.6% of relative secondary mass flow are possible. The key to high jet control sensitivity is found to be lateral jet momentum with the optimum injection position at 12% of cavity width (31.6% of the primary nozzle length) above the primary nozzle exit. CFD results also show that a standard kε turbulence closure with nonequilibrium wall functions provides the best predictions of the flow.  相似文献   

13.
刘明侯  T.L.Chan 《力学学报》2005,37(2):135-140
实验研究了狭缝射流撞击圆柱表面后壁面射流区的平均流动和湍流特 性. 考察了雷诺数 Re (6000-20000), 喷口到受撞表面距 离 Y/W (5-13), 喷口宽度 W (6.25mm, 9.38mm), 受撞表 面曲率(半圆柱体直径 D = 150mm)对流动和湍流结构的影响. 通过分析 X 热线 在壁面射流区的测量结果发现,在近壁区域,表面曲率、 Re_{w} , Y/W 和 S/W 等 参数对 \sqrt {\overline{u^2}} / U_m 的影响比对 \sqrt {\overline{v^2}} / U_m 强,并且切 应力 \overline {uv} /U_m^2 对表面曲率变化最敏感. 当喷口与受撞击表面之间的距 离 Y/W 在一定范围内增加时, 沿圆柱表面流动的流向和横向的湍流强度增强. 用平板射流和圆柱体表面壁面射流的数据进行比较,从而得到表面曲率对壁面射流特 性的影响. 结果表明,曲率对壁面射流的影响较强, 并随着 S/W 的增大而增强. 随着雷诺数的增大,壁面曲率的影响也有强化的趋势.  相似文献   

14.
Mould flow oscillations are of major importance for the performance of the continuous casting process. They are suspected to promote entrainment of slag and other unwanted secondary phases into the melt pool. These oscillating turbulent flows are investigated by means of numerical simulations. The numerical model is based on the equation of continuity and the unsteady Reynolds averaged Navier–Stokes equations. The system of flow equations is closed by a Reynolds stress turbulence model in combination with non‐equilibrium wall functions. The unsteady simulation resolves low‐frequency oscillations of the flow field. These frequencies and numerically resolved mean values are in agreement with results of corresponding model experiments. The proposed model should be advantageous in order to investigate the mechanisms of the oscillations and the process of slag entrainment in more detail. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
A pulsating laminar flow of a viscous, incompressible liquid in a rectangular duct has been studied. The motion is induced under an imposed pulsating pressure difference. The problem is solved numerically. Different flow regimes are characterized by a non‐dimensional parameter based on the frequency (ω) of the imposed pressure gradient oscillations and the width of the duct (h). This, in fact, is the Reynolds number of the problem at hand. The induced velocity has a phase lag (shift) with respect to the imposed pressure oscillations, which varies from zero at very slow oscillations, to 90° at fast oscillations. The influence of the aspect ratio of the rectangular duct and the pulsating pressure gradient frequency on the phase lag, the amplitude of the induced oscillating velocity, and the wall shear were analyzed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The global Galerkin method is applied to the benchmark problem that considers an oscillatory regime of convection of air in a tall two‐dimensional rectangular cavity. The three most unstable modes of the linearized system of the Boussinesq equations are studied. The converged values of the critical Rayleigh numbers together with the corresponding oscillation frequencies are calculated for each mode. The oscillatory flow regimes corresponding to each of the three modes are approximated asymptotically. No direct time integration is applied. Good agreement with the previously published results obtained by solution of the time‐dependent Boussinesq equations is reported. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Turbulent drag reduction by spanwise wall oscillations   总被引:1,自引:0,他引:1  
In the present work a technique is numerically investigated, which is aimed at reducing the friction drag in turbulent boundary layers and channel flows. A cyclic spanwise oscillation of the wall with a proper frequency and amplitude is imposed, allowing a reduction of the turbulent drag of up to 40%. The present work is based on the numerical simulation of the Navier-Stokes equations in the simple geometry of a plane channel flow. The frequency of the oscillations is kept fixed at the most efficient value determined in previous studies, while the choice of the best value for the amplitude of the oscillations is evaluated not only in terms of friction reduction, but also by taking into consideration the overall energy balance and the power spent for the motion of the wall. The analysis of turbulence statistics allows to shed some light on the way oscillations interact with wall turbulence, as illustrated by visual inspection of some instantaneous flow fields. Finally, a simple explanation is proposed for this interaction, which leads to a rough estimate of the most efficient value for the frequency of the oscillations.  相似文献   

18.
Self-sustained oscillating jet flow of water in a rectangular cavity, having thickness which is small relative to its width, is measured using LDA and PIV, and predicted using a transient two-dimensional computational fluid dynamic model which incorporates a resistance coefficient for cross-flow. The basic geometry represents a scale model of a mould typical of thin slab steel casting. The frequency of the oscillation was found to be independent of cavity thickness. It also increased as the cavity width decreased down to some critical value, after which the oscillation ceased. The frequency was observed to increase with nozzle diameter and was found to decrease with increasing length/width ratio of the cavity. The numerical model, with a fixed dimensionless cross-flow resistance coefficient, was shown to predict the Strouhal number of the oscillation and the dimensionless mean velocity profiles in the jet extremely well.  相似文献   

19.
Experimental results on the near field development of a turbulent rectangular wall jet with aspect ratio 10 that issues from a sharp-edged orifice at Reh  23,000 are presented and discussed, in comparison with results obtained in a free jet with identical initial conditions. Hot wire X-probe measurements on cross plane grids provide information on the 3D characteristics of the flow field. This work, besides presenting the main features of the jet, focuses on the effect of vorticity on the development of specific flow field characteristics. Mean vorticity components were estimated by interpolation and derivation from the mean and turbulent velocity measurements and the symmetries of the flow field were imposed by suitable averaging. Several terms of the axial vorticity equation are presented and discussed to uncover some complex flow physics, related e.g. to axis switching and the formation of a dumbbell shape of the jet outline, in the early stages of development.  相似文献   

20.
 The paper presents an experimental investigation of turbulent jets issuing from rectangular nozzles. Nozzles with aspect ratios between 3 and 10 were used. Eight different initial conditions were studied. The following jet parameters were measured and evaluated: mean velocity components, jet boundaries, jet momentum, jet entrainment, turbulence intensities and Reynolds stresses. A DISA 55M thermoanemometer and a data acquisition system BE256 were used. The influence of the initial conditions on the similarity of the flow was determined with respect to the mean axial velocity, turbulence intensity and the Reynolds stresses. A significant influence of the initial conditions on the flow structure was observed. The possibility for jet control is discussed and suggestions are given about the need to investigate different parameters. Received: 25 November 1996/Accepted: 30 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号