首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fabrication of complex three-dimensional microchannel systems in PDMS   总被引:1,自引:0,他引:1  
This paper describes a method for fabricating three-dimensional (3D) microfluidic channel systems in poly(dimethylsiloxane) (PDMS) with complex topologies and geometries that include a knot, a spiral channel, a "basketweave" of channels, a chaotic advective mixer, a system with "braided" channels, and a 3D grid of channels. Pseudo-3D channels, which are topologically equivalent to planar channels, are generated by bending corresponding planar channels in PDMS out of the plane into 3D shapes. True 3D channel systems are formed on the basis of the strategy of decomposing these complex networks into substructures that are planar or pseudo-3D. A methodology is developed that connects these planar and/or pseudo-3D structures to generate PDMS channel systems with the original 3D geometry. This technique of joining separate channel structures can also be used to create channel systems in PDMS over large areas by connecting features on different substrates. The channels can be used as templates to form 3D structures in other materials.  相似文献   

2.
Steric stabilization and flocculation of colloids with surface-grafted poly(dimethylsiloxane) (PDMS) chains are examined in liquid and supercritical carbon dioxide with and without hexane as a cosolvent. Neither poly(methyl methacrylate) (PMMA) nor silica particles with grafted 10,000 g/mol PDMS could be stabilized in pure CO(2) at pressures up to 345 bar at 25 degrees C and 517 bar at 65 degrees C without stirring. The addition of 15 wt% hexane to CO(2) led to stable dispersions with sedimentation velocities of 0.2 mm/min for 1-2 μm PMMA particles. The critical flocculation pressure of the colloids in the hexane/CO(2) mixture, determined from turbidity versus time measurements, was found to be the same for silica and PMMA particles and was well above the upper critical solution pressure for the PDMS-CO(2) system. The addition of a nonreactive cosolvent, hexane, eliminates flocculation of PMMA particles synthesized through dispersion polymerization in CO(2) with PDMS-based surfactants. Copyright 2000 Academic Press.  相似文献   

3.
Qu S  Chen X  Chen D  Yang P  Chen G 《Electrophoresis》2006,27(24):4910-4918
A novel method for the rapid fabrication of poly(methyl methacrylate) (PMMA) microfluidic chips using poly(dimethylsiloxane) (PDMS) templates has been demonstrated. The PDMS molds were fabricated by soft lithography. The dense prepolymerized solution of methyl methacrylate containing thermal and UV initiators was allowed to polymerized between a PDMS template and a piece of a 1 mm thick commercial PMMA plate under a UV lamp. The images of microchannels on the PDMS template were precisely replicated into the synthesized PMMA substrates during the UV-initiated polymerization of the prepolymerized solution on the surface of the PMMA plate at room temperature. The polymerization could be completed within 10 min under ambient temperature. The chips were subsequently assembled by thermal bonding of the channel plate and the cover sheet. The new fabrication method obviates the need for specialized replication equipment and reduces the complexity of prototyping and manufacturing. Nearly 20 PMMA chips were replicated using a single PDMS mold. The attractive performance of the new microfluidic chips has been demonstrated by separating and detecting cations in connection with contactless conductivity detection. The fabricated PMMA microchip has also been successfully employed for the determination of potassium and sodium in environmental and biological samples.  相似文献   

4.
We developed a confocal microscopic method for a quantitative evaluation of the mixing performance of a three-dimensional microfluidic mixer. We fabricated a microfluidic baker's transformation (MBT) mixer as a three-dimensional passive-type mixer for the efficient mixing of solutions. Although the MBT mixer is one type of ideal mixers, it is hard to evaluate its mixing performance, since the MBT mixer is based on several cycles of complicated three-dimensional microchannel structures. We applied the method developed here to evaluate the mixing of water and a fluorescein isothiocyanate (FITC; diffusion coefficient, 4.9 × 10(-10) m(2) s(-1)) solution by the MBT mixer. This method enables us to capture vertical section images for the fluid distributions of FITC and water at different three-dimensional microchannel structures of the MBT device. These images are in good agreement with those of mixing images based on numerical simulations. The mixing ratio could be calculated by the fluorescence intensity at each pixel of the vertical section image; complete mixing is recognized by a mixing ratio of more than 90%. The mixing ratios are measured at different cycles of the MBT mixer by changing the flow rate; the mixing performance is evaluated by comparisons with the mixing ratio of the straight microchannel without the MBT mixer.  相似文献   

5.
Xu BY  Yan XN  Zhang JD  Xu JJ  Chen HY 《Lab on a chip》2012,12(2):381-386
In this study, a simple and economical fabrication technique bridging micro- and nanostructures is proposed. Glass molds with micro-nanostructures are fabricated by glass microlithography. The microlithography provides flexibility for structure design, and the glass etching contributes to transform the micro glass ridge to the nanoscale. Glass ridge structures with triangular cross sections are generated by undercutting, which coupled the isotropic character of glass and the shield effect of the top Cr layer upon HF etching. Further etching induced the height of the glass ridges to shrink from micro- to nanometres due to the edge effects. At the late etching stage, the geometrical change of the glass greatly slows down, which gives better control over the size of the glass ridge. By glass structure mold-copy, well repeatable, mechanically stable and tunable polydimethylsiloxane (PDMS) channels and cones are fabricated. Scanning electron microscopy (SEM) and laser interferometry (LI) are carried out to characterize the micro-nanostructures. To demonstrate their workability, sample preconcentration to a single nanochannel level is carried out.  相似文献   

6.
In this article, we focus on the enormous potential of a CO(2)-laser system for rapidly producing polymer microfluidic structures. The dependence was assessed of the depth and width of laser-cut channels on the laser beam power and on the number of passes of the beam along the same channel. In the experiments the laser beam power was varied between 0 and 40 W and the passes were varied in the range of 1 to 7 times. Typical channel depths were between 100 and 300 microm, while the channels were typically 250 microm wide. The narrowest produced channel was 85 microm wide. Several bonding methods for microstructured PMMA [poly(methyl methacrylate)] parts were investigated, such as solvent-assisted glueing, melting, laminating and surface activation using a plasma asher. A solvent-assisted thermal bonding method proved to be the most time-efficient one. Using laser micromachining together with bonding, a three-layer polymer microstructure with included optical fibers was fabricated within two days. The use of CO(2)-laser systems to produce microfluidic systems has not been published before. These systems provide a cost effective alternative to UV-laser systems and they are especially useful in microfluidic prototyping due to the very short cycle time of production.  相似文献   

7.
Yuen PK  Su H  Goral VN  Fink KA 《Lab on a chip》2011,11(8):1541-1544
This technical note presents a fabrication method and applications of three-dimensional (3D) interconnected microporous poly(dimethylsiloxane) (PDMS) microfluidic devices. Based on soft lithography, the microporous PDMS microfluidic devices were fabricated by molding a mixture of PDMS pre-polymer and sugar particles in a microstructured mold. After curing and demolding, the sugar particles were dissolved and washed away from the microstructured PDMS replica revealing 3D interconnected microporous structures. Other than introducing microporous structures into the PDMS replica, different sizes of sugar particles can be used to alter the surface wettability of the microporous PDMS replica. Oxygen plasma assisted bonding was used to enclose the microstructured microporous PDMS replica using a non-porous PDMS with inlet and outlet holes. A gas absorption reaction using carbon dioxide (CO(2)) gas acidified water was used to demonstrate the advantages and potential applications of the microporous PDMS microfluidic devices. We demonstrated that the acidification rate in the microporous PDMS microfluidic device was approximately 10 times faster than the non-porous PDMS microfluidic device under similar experimental conditions. The microporous PDMS microfluidic devices can also be used in cell culture applications where gas perfusion can improve cell survival and functions.  相似文献   

8.
Fang Q  Kim DP  Li X  Yoon TH  Li Y 《Lab on a chip》2011,11(16):2779-2784
Highly effective mixing in microchannels is important for most chemical reactions conducted in microfluidic chips. To obtain a rigid and chemically resistant micromixer system at low cost, we fabricated a Y-shaped microchannel with built-in mixer structures by static liquid photolithography (SLP) from methacrylated polyvinylsilazane (MPVSZ) as an inorganic polymer photoresist which was then converted to a silicate phase by hydrolysis in vaporized ammonia atmosphere at 80 °C. The microchannel incorporating herringbone mixer structures was bonded with a matching polydimethylsiloxane (PDMS) open channel which was pre-coated by perhydropolysilazane (PHPS)-based mixture, and finally treated by additional hydrolysis at room temperature to convert the PHPS layer to a silica phase. Finally, the chemical resistance of the microfluidic system with embedded micromixer was confirmed with various solvents, and the excellent mixing performance in a short mixing length of 2.3 cm was demonstrated by injecting two different colored fluids into the microchannel.  相似文献   

9.
In this paper we describe the use of a CO(2) laser for production of cavities and microstructures in poly(methyl methacrylate) (PMMA) by moving the laser beam over the PMMA surface in a raster pattern. The topography of the cavities thus produced is studied using stylus and optical profilometry and scanning electron microscopy (SEM). The microstructures display artifacts from the laser ablation process and we describe how the laser ablation parameters can be optimized in order to minimize these artifacts. Using this technique it is possible to generate structures with a depth from 50 microm and a minimum width of approximately 200 microm up to depth and widths of several mm, governed by the beam size and the laser settings.  相似文献   

10.
A cleaner and simple spectrophotometric method using microflow analysis (muFA) was performed. It consisted of a T-junction with microcoil on a polymethyl methacrylate (PMMA) chip which was fabricated by laser ablation and a molded polydimethylsiloxane (PDMS) as top plate. The fabricated PMMA chip was integrated with light emitting diode (LED) as light source and spectrometer as detector. The proposed device was applied to determining copper in water samples using nitroso-R salt as chromogenic reagent at 495nm. It was found that the proposed muFA system was with less reagents and samples consumption with tiny waste generation. The relative standard deviation (R.S.D.) was less than 2% (n=11) with the percentage recovery of 98.0+/-1.7% (n=7). The linear range for determination of copper in water samples was over the range of 0.05-3.0mugmL(-1) with a correlation coefficient (r(2)) of 0.999. The limit of detection (3sigma) was 47ngmL(-1) with a sample throughput of 30h(-1).  相似文献   

11.
Li HF  Lin JM  Su RG  Cai ZW  Uchiyama K 《Electrophoresis》2005,26(9):1825-1833
A protocol of producing multiple polymeric masters from an original glass master mold has been developed, which enables the production of multiple poly(dimethylsiloxane) (PDMS)-based microfluidic devices in a low-cost and efficient manner. Standard wet-etching techniques were used to fabricate an original glass master with negative features, from which more than 50 polymethylmethacrylate (PMMA) positive replica masters were rapidly created using the thermal printing technique. The time to replicate each PMMA master was as short as 20 min. The PMMA replica masters have excellent structural features and could be used to cast PDMS devices for many times. An integration geometry designed for laser-induced fluorescence (LIF) detection, which contains normal deep microfluidic channels and a much deeper optical fiber channel, was successfully transferred into PDMS devices. The positive relief on seven PMMA replica masters is replicated with regard to the negative original glass master, with a depth average variation of 0.89% for 26-microm deep microfluidic channels and 1.16% for the 90 mum deep fiber channel. The imprinted positive relief in PMMA from master-to-master is reproducible with relative standard deviations (RSDs) of 1.06% for the maximum width and 0.46% for depth in terms of the separation channel. The PDMS devices fabricated from the PMMA replica masters were characterized and applied to the separation of a fluorescein isothiocyanate (FITC)-labeled epinephrine sample.  相似文献   

12.
Components for integrated poly(dimethylsiloxane) microfluidic systems   总被引:11,自引:0,他引:11  
This review describes the design and fabrication of microfluidic systems in poly(dimethylsiloxane) (PDMS). PDMS is a soft polymer with attractive physical and chemical properties: elasticity, optical transparency, flexible surface chemistry, low permeability to water, and low electrical conductivity. Soft lithography makes fabrication of microfluidic systems in PDMS particularly easy. Integration of components, and interfacing of devices with the user, is also convenient and simpler in PDMS than in systems made in hard materials. Fabrication of both single and multilayer microfluidic systems is straightforward in PDMS. Several components are described in detail: a passive chaotic mixer, pneumatically actuated switches and valves, a magnetic filter, functional membranes, and optical components.  相似文献   

13.
Irawan R  Tay CM  Tjin SC  Fu CY 《Lab on a chip》2006,6(8):1095-1098
This paper reports a compact and practical fluorescence sensor using an in-fiber microchannel. A blue LED, a multimode PMMA or silica fiber and a mini-PMT were used as an excitation source, a light guide and a fluorescence detector, respectively. Microfluidic channels of 100 microm width and 210 microm depth were fabricated in the optical fibers using a direct-write CO(2) laser system. The experimental results show that the sensor has high sensitivity, able to detect 0.005 microg L(-1) of fluorescein in the PBS solution, and the results are reproducible. The results also show that the silica fiber sensor has better sensitivity than that of the PMMA fiber sensor. This could be due to the fouling effect of the frosty layer formed at the microchannel made within the PMMA fiber. It is believed that this fiber sensor has the potential to be integrated into microfluidic chips for lab-on-a-chip applications.  相似文献   

14.
软模板印刷法制备超疏水性聚苯乙烯膜   总被引:3,自引:0,他引:3  
金美花  廖明义  翟锦  江雷 《化学学报》2008,66(1):145-148
首次利用软模板印刷的方法,以微米-亚微米-纳米复合结构的PDMS为软模板,在平滑聚苯乙烯表面上成功制备了同样具有微米-亚微米-纳米复合结构的超疏水表面,该表面与水的接触角高达161.2º。软模板印刷方法可以用在其它热塑性聚合物如聚丙烯、聚甲基丙烯酸甲酯和聚碳酸酯等材料上,是一种简单有效地制备超疏水性表面的方法。  相似文献   

15.
Hong CC  Choi JW  Ahn CH 《Lab on a chip》2004,4(2):109-113
An innovative in-plane passive micromixer using modified Tesla structures, which are used as passive valves, has been designed, simulated, fabricated and successfully characterized in this paper. Simulation and experimental results of the developed novel micromixer have shown excellent mixing performance over a wide range of flow conditions in the micro scale. The micromixer realized in this work has achieved even better mixing performance at a higher flow rate, and its pressure drop is less than 10 KPa at the flow rate of 100 microl min(-1). This micromixer shows characteristics similar to Taylor dispersion, with contributions from both diffusion and convection. The mixer has a diffusion domain region at low flow rate, but it moves to a convection domain region at high flow rate. Due to the simple in-plane structure of the novel micromixer explored in this work, the mixer can be easily realized and integrated with on-chip microfluidic devices and micro total analysis systems (micro-TAS).  相似文献   

16.
The surface of polydimethylsiloxane (PDMS) was modified using a CO2-pulsed laser to evaluate the changes in physical and biological properties of the treated surface. Attachment of anchorage dependent cells, namely baby hamster kidney (BHK) fibroblastic cells, on PDMS surface was investigated in stationary culture conditions. BHK cell adhesion and growth on the PDMS surfaces were studied using scanning electron microscopy (SEM) and optical microscopy. To evaluate the surface wettability, water drop contact angles were determined. The laser treated PDMS surfaces showed high hydrophobicity and low cell adhesion, no spreading and growth in comparison with the unmodified PDMS. It was found that both the wettability and surface structure of the PDMS surface control cell attachment and growth.  相似文献   

17.
A simple flame treatment method was explored to construct micro/nanostructures on a surface and then fabricate a biomimetic superhydrophobic surface at a relatively low cost. SiO2‐containing polydimethylsiloxane (PDMS) was used as a substrate. The PDMS replicas with various micropatterned surfaces were fabricated using grass leaf, sand paper, and PET sheet with parallel groove geometry as templates via PDMS replica molding. The PDMS replica surfaces with micron structures and the surface of a flat PDMS sheet as a control sample were further treated by flame. The fabricated surfaces were characterized by scanning electron microscopy and water contact angle measurements. The effect of surface microstructures on the transparency of PDMS was also investigated. The studies indicate that the fine nanoscale structures can be produced on the surfaces of PDMS replicas and a flat PDMS sheet by a flame treatment method, and that the hierarchical surface roughness can be adjusted and controlled by varying the flame treatment time. The flame‐treated surfaces of PDMS replicas and a flat PDMS sheet possess superhydrophobicity and an ultra‐low sliding angle reaching a limiting value of 1°, and the anisotropic wettability of the PDMS replica surface with oriented microgroove structures can be greatly suppressed via flame treatment. The visible light transmittance of the flame‐treated flat PDMS surface decreases with prolonged flame treatment times. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Arundell M  Perry VH  Newman TA 《Lab on a chip》2011,11(17):3001-3005
The rapid prototyping of a reversible and one step moulded compartmentalised neuron glass/PDMS device with a thin wall barrier directly adjacent to the reservoirs is presented. A simple moulding technique to produce these devices results in a barrier of 560 μm where the 3 μm deep by 8 μm wide channels can be reversibly fabricated in either the glass base or PDMS compartmentalised mould depending on the type of application required. Using glass substrates with commercially laser engraved microchannels, both the PDMS planar and PDMS channelled device can be easily fabricated in a standard laboratory. The compartmentalised device has several advantages including good experimental accessibility and versatility with a variety of end user applications.  相似文献   

19.
提出了一种以磁铁固定微铁丝为模板的利用原位控制聚合制作无缝高聚物微流控芯片的新方法, 并用其制备了复杂流道PMMA芯片和内埋玻璃纤维丛的PMMA混合芯片, 实现了在雷诺数为22时的理想混合. 所建立的方法无需超净环境, 操作简单, 成本低且易推广.  相似文献   

20.
Elastic and quasi-elastic light scattering data obtained from PS/PDMS/PMMA/toluene mixtures are reported. Several systems characterized by different concentrations and different molecular weights of PMMA are considered. For each of these systems, a systematic investigation is performed as a function of the scattering angle and the concentration of the PS/PDMS mixture using both techniques. The PMMA does not contribute directly to the scattered light since its increment of refractive index is zero. However the data show that its presence modifies substantially the apparent interaction parameter of PS and PDMS and the single diffusion coefficient of these polymers in the solution. The variations of these quantities with the concentration and molecular weight of PMMA are obtained. The data are analyzed within a simplified model combining based on the random phase approximation and the Rouse dynamics for ternary polymer mixtures. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号