首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical analysis and experimental investigation of microwave photonic links with bias-shifted Mach-Zehnder modulators are presented. An optical amplifier is used to increase link gain and reduce noise figure. The combination of modulator bias shift away from quadrature and optical amplification reduces the link noise figure by more than 15 dB. For modulation frequencies from 2 to 18 GHz, the third-order limited spurious-free dynamic range (SFDR3) of these links is greater than 120 dB, normalized to a 1-Hz bandwidth. Conventional links based on Mach-Zehnder modulators are limited to SFDR3 values of approximately 110 dB, normalized to a 1-Hz bandwidth. This level of performance is achieved without electronic or optical linearization.  相似文献   

2.
The characteristics of hybrid fiber amplifier (HFA) are investigated. HFA is composed of three stages: short-length EDFA pre-stage, DCF Raman amplifier, and power boosting EDFA. HFA has low noise figure, high output power, and also wide input power dynamic range. Gain control method of HFA is presented experimentally, and the transient gain excursion is suppressed to less than 0.5 dB at 3 dB channel add-drop. HFA can be used as line amplifier in optical transmission link even combined with distributed Raman amplifier due to wide input power dynamic range. The transmission performance of HFA is better than EDFA by more than 1.0 dB of Q-factor in 720 km SMF transmission.  相似文献   

3.
In this paper, two stage hybrid optical amplifier (HOA) composed of a single erbium doped fiber amplifier and Raman amplifier is proposed for dense wavelength division multiplexed (DWDM) system and investigate the impact of reduced channel spacing. The performance has been evaluated in the term of gain, gain flatness and noise figure. Also, using gain equalization technique, hybrid optical amplifier that has a gain flatness of 3 dB, and a noise figure of less than 7.4 dB is observed.  相似文献   

4.
We present the results of an investigation of optical gain and noise figure for simultaneous multi-channel amplification of an erbium doped fibre amplifier (EDFA) under optimized pump condition. Different pump configurations with varying input signal levels show interesting features on gain flatness. In the experiment, population inversion along the fibre length which determines the gain-spectra and noise characteristics of the amplifier is adjusted through optimized fibre length and injected pump power in order to minimize the gain-tilt at C-band. It is observed that bi-directional pumping manifests the best combination of low noise and high gain of EDFA which are useful as in-line repeaters in WDM network. We obtain 30 ± 1.5 dB intrinsically flat small signal gain from 1538 nm to 1558 nm band of wavelength with noise figure <4 dB for 16-channel simultaneous amplification in a single stage EDFA without gain flattening filter.  相似文献   

5.
Surinder Singh  R.S. Kaler 《Optik》2007,118(2):74-82
We numerically simulated the ten channels at 10 Gb/s dense wavelength division multiplexing (DWDM) transmission faithfully over 17,227 km using 70 km span of single mode fiber (SMF) and dispersion compensating fiber (DCF) using optimum span scheme at channel spacing 20 GHz. For this purpose, inline optimized semiconductor optical amplifiers (SOAs) and DPSK format are used. We optimized the SOA parameters for inline amplifier with minimum crosstalk and amplified spontaneous emission noise with sufficient gain at bias current 400 mA. For this bias current, constant gain 36.5 dB is obtained up to saturation power 21.35 mW. We have also optimized the optical phase modulator bandwidth for 400 mA current which is around 5.5 GHz with crosstalk −14.2 dB between two channels at spacing 20 GHz.We show the 10×10 Gb/s transmission over 70 km distance with inline amplifier has good signal power received as compared to without amplifier, even at equal quality factor. We further investigated the optimum span scheme for 5670 km transmission distance for 10×10 Gb/s with channel spacing 20 at 5.5 GHz optical phase modulator bandwidth. As we increase the transmission distance up to 17,227 km, there is increase in power penalty with reasonable quality.The impact of optical power received and Q factor at 5670 and 17,227 km transmission distance for different span schemes for all channels has been illustrated. For launched optical power less than saturation, all channels are obtained at bit error rate floor of 10−10.  相似文献   

6.
We present simulation and experimental characterization of a hybrid amplifier comprising of a Raman amplifier and an erbium doped fiber (EDF) amplifier, with enhanced performance. The incorporation of a pumped EDF section in a fiber Raman amplifier (FRA) employing a dispersion compensating fiber is demonstrated to provide superior performance than a sole FRA system. The hybrid amplifier is characterized in terms of single channel gain and noise figure, and the results of measurements are shown to be in close agreement with the simulated results. Polarization-dependent gain (PDG) and multi-channel measured and simulated gain characterization of the Raman/EDFA hybrid amplifier are also presented.  相似文献   

7.
《Optics Communications》2004,229(1-6):249-252
A gain-clamped semiconductor optical amplifier (SOA) is used as an inline amplifier in combination with a distributed Raman fiber amplifier. The combined amplifier has 20 dB gain and a noise figure below 2.7 dB. The optical signal to noise ratios after five spans of 20 dB loss, equivalent to 5 × 80 km, are over 25.2 dB for eight-channel transmissions. In addition, the potentially compact amplifier shows negligible transients under dynamic add-drops.  相似文献   

8.
Optimization of an Externally Modulated RF Photonic Link   总被引:2,自引:0,他引:2  
The noise figure and sub-octave spurious-free dynamic range of a carrier-suppressed analog RF photonic link are examined. Expressions for noise figure and dynamic range are derived as a function of the modulator bias angle. A closed form expression for the bias angle that optimizes link noise figure and spurious-free dynamic range is also derived. Experimental results are presented and shown to agree with calculations. These experimental results include some of the lowest noise figure and highest dynamic range results published to date for an RF photonic link incorporating a standard Mach-Zehnder modulator: 6 dB and 122 dB·Hz2/3, respectively.  相似文献   

9.
We propose double pass fiber Raman amplifier schemes based on Raman fiber oscillator in order to amplify optical signal with wavelengths from 1610 to 1650 nm efficiently. We experimentally demonstrate that the proposed double pass amplifier scheme has enhanced gain characteristics compared to a conventional single pass scheme. We also demonstrate a scheme for the proposed double pass amplifier to have small gain variation over the wavelength range by using two fiber Bragg gratings with different center wavelengths.  相似文献   

10.
Abstract

The noise figure and sub-octave spurious-free dynamic range of a carrier-suppressed analog RF photonic link are examined. Expressions for noise figure and dynamic range are derived as a function of the modulator bias angle. A closed form expression for the bias angle that optimizes link noise figure and spurious-free dynamic range is also derived. Experimental results are presented and shown to agree with calculations. These experimental results include some of the lowest noise figure and highest dynamic range results published to date for an RF photonic link incorporating a standard Mach-Zehnder modulator: 6 dB and 122 dB·Hz2/3, respectively.  相似文献   

11.
We propose and investigate experimentally a gain-clamped S-band erbium-doped fiber amplifier module, employing a fiber Bragg grating to serve as a reflected element to lase a saturated tone injected into the module, by forward optical feedback method. In addition, different injected powers of the saturated tone are used to realize the performances of gain and noise figure for the proposed amplifier over the effectively wavelength range of 1478-1520 nm.  相似文献   

12.
We investigated 20 channels at 10 Gb/s wavelength division multiplexing (WDM) transmission over 1190 km single mode fiber and dispersion compensating fiber using cascaded inline semiconductor optical amplifier at a span of 70 km for RZ-DPSK (return zero differential phase-shift keying) modulation format by using same channel spacing, i.e. 100 GHz. We show for RZ-OOK (return zero on-off keying) format a transmission distance of up to 1050 km with Q factor more than 15 dB, without any power drops. We developed the SOA model for inline amplifier having minimum cross-talks and ASE (amplified spontaneous emission) noise power with sufficient gain. At optimal bias current of 400 mA, a high constant gain of 36.5 dB is obtained up to a saturation power of 21.36 mW. So reduction of cross-talk and distortion is possible by decreasing the bias current at appropriate amplification factor.The DPSK modulation format has less cross-talk as compared to OOK format for nonlinearities and saturation case. The impact of optical power received and Q factor at different distance for both RZ-OOK and RZ-DPSK modulation format has been illustrated. We have shown the optical spectrum and clear Eye diagram at the transmission distance of 1190 km in RZ-DPSK system and 1050 km in RZ-OOK systems.The bit error rate (BER) for all channels observed is less than 10−10 up to gain saturation for both DPSK and OOK systems. Finally, we investigated that the transmission distance decreases with a decrease in channel spacing of up to 20 GHz.  相似文献   

13.
The L-band erbium-doped fiber amplifier (EDFA) of low noise figure and high clamped-gain using gain-clamped and double-pass configuration is presented in this paper. A total of five different configurations of EDFAs by reflection scheme with single forward pumping schemes are examined and compared here. Among these configurations, we first find the configuration of 1480-nm pumped L-band EDFA with optimum gain and noise figure value. To further minimize the gain variation, a fiber Bragg grating (FBG) with 1615-nm center wavelength and 1-nm bandwidth is determined and added in double-pass L-band EDFA. The gain variation and maximum noise figure of EDFA while channel dropping is investigated. As the number of channel dropping from 32 to 4, the L-band type-A EDFA keep the variation of gain within 2.9 dB and the maximum noise figure below 5 dB with each channel’s input power of −23 dBm.  相似文献   

14.
In this paper, the variational method is employed for minimizing the gain ripple of multi-wavelength fiber Raman amplifiers. The variance of gain spectrum of the fiber Raman amplifier is regarded as the cost function, restriction on total pump power and average gain is given as the constraints of the minimization problem. It is shown that the minimization problem with any necessary constraints on the pump powers, average gain and signal to noise ratio, is reduced to a two-point boundary value problem. The method gives the entire possible local and global solutions. The method is applied to different examples of fiber Raman amplifiers with different lengths from 25 km to 100 km and different numbers of pumps from 4 to 20 to determine the pump powers and wavelengths for minimum gain ripple. It was obtained for a 100 km fiber Raman amplifier the gain ripple can be about 0.1 dB with on-off gain more than 20 dB.  相似文献   

15.
We demonstrate an optically gain-clamped discrete Raman amplifier with a suppressed low-frequency relative intensity noise transfer from pump sources to an input amplified signal, which is accomplished by employing a cascaded second-order Raman fiber resonator as an optical amplification. The input signal dynamic range for a 3-dB gain compression is controllable without affecting the clamping level. In addition, we find that the Raman net gain is unsusceptible to fiber parameters such as the gain and attenuation coefficients at the pump, first-, and second-order Stokes lines. These characteristics fit our proposed gain-clamped discrete Raman amplifier for practical deployment although it works at the expense of the efficiency.  相似文献   

16.
The double-pass erbium-doped zirconia fiber amplifier (EDZFA) is proposed and demonstrated to provide a wide-band amplification as well as flat-gain operation in both the C- and L-band regions using only a single-gain medium. The proposed amplifier utilizes an erbium-doped zirconia fiber (EDZF) with erbium ion concentration of 2800 ppm as a gain medium. The medium is fabricated in a ternary glass host, zirconia-yttria-aluminum codoped silica fiber through solution doping technique along with modified chemical vapor deposition (MCVD). Compared to a single-pass operation, the double-pass EDZFA shows a better gain performance. At input signal power of 0 dBm and the optimum EDZF length of 2 m, a flat gain of around 16 dB is achieved by the proposed double-pass amplifier with gain variation of approximately 2.5 dB throughout the wavelength range from 1530 to 1590 nm. However, the noise figure of the double-pass amplifier is slightly higher than that of the single-pass due to inefficient population inversion at the input part of the amplifier.  相似文献   

17.
Performance of a Bismuth-based Erbium-doped fiber amplifier is experimentally and theoretically investigated using 1480 nm pumping with double-pass scheme. In the theoretical analysis, the rate and power propagation equations are solved to examine the optimum length for the C-band operation as well as the gain and noise figure characteristics. The calculated small signal gain is 38 dB with gain variation of less than 3 dB. The measured gain is 4 dB lower due to spurious reflections which were ignored in the theoretical analysis. At input signal power of 0 dBm, a gain of 14.5 dB is obtained experimentally with gain variation of less than 1 dB within the wavelength region from 1530 to 1565 nm. The noise figure is less than 12 dB within this region.  相似文献   

18.
The minimum noise figure of linear phase-insensitive amplifiers is 3 dB, according to the constraint of the uncertainty principle. Laser amplifiers, parametric amplifiers and Raman amplifiers obey the general quantum limit in an ideal case. A degenerate parametric amplifier is a phase-sensitive linear amplifier, and thus is a noiseless amplifier with a noise figure of 0 dB. The noise figure degradation in a practical amplifier and the signal-to-noise ratio design of an optical amplifier system are presented. Several other amplifier characteristics, such as signal gain, frequency bandwidth and saturation output power, are also discussed.  相似文献   

19.
A theoretical study of the temperature dependent noise effects of praseodymium-doped fiber amplifiers (PEDFAs) has been examined. The Pr3+-doped ZBLAN fiber amplifier pumped at 1017 nm and Pr3+-doped GeGa-sulfied fiber amplifier pumped at 1028 nm are chosen. The temperature-dependent rate and propagation equation related to four-level system consideration which is based on the population difference among amplification levels has been used. The population difference depends on pump and signal powers, Boltzman factor KB, cross-sections, noise figure (NF) and Pr3+ concentration. The numerical results obtained over the temperature range from −20 °C to + 60 °C are used to present an analytical expression for the signal gain and noise figure effects in PDFAs length and noise figure with input pump power. The amplified spontaneous emission (ASE) has been taken into account.  相似文献   

20.
Based on dual-order stimulated Raman scattering (SRS) of a single 1395 nm Raman fiber laser in 75 km single mode fiber and its corresponding dispersion compensation module, a hybrid Raman/Erbium doped fiber amplifier (EDFA) for long wavelength band (L-band) amplification is realized by inserting a segment of EDF within the span. By comparing the performance of gain and noise in four hybrid amplifiers with different span configurations, we find that the distribution of the secondary L-band amplification obtained from the EDF along the link has a great influence on the performance of the hybrid amplifier. Both gain and noise performance of hybrid amplifier can be improved significantly by optimizing the location of the EDF. Moreover, we can extend the flat gain bandwidth from L-band to central wavelength band (C-band) plus L-band by recycling the residual first-order SRS to pump a segment of EDF with proper length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号