首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We consider an adaptive finite element method (AFEM) for obstacle problems associated with linear second order elliptic boundary value problems and prove a reduction in the energy norm of the discretization error which leads to R-linear convergence. This result is shown to hold up to a consistency error due to the extension of the discrete multipliers (point functionals) to H^-1 and a possible mismatch between the continuous and discrete coincidence and noncoincidence sets. The AFEM is based on a residual-type error estimator consisting of element and edge residuals. The a posteriori error analysis reveals that the significant difference to the unconstrained case lies in the fact that these residuals only have to be taken into account within the discrete noncoincidence set. The proof of the error reduction property uses the reliability and the discrete local efficiency of the estimator as well as a perturbed Galerkin orthogonality. Numerical results are given illustrating the performance of the AFEM.  相似文献   

2.
3.
张铁  李铮 《计算数学》2012,34(2):215-224
一阶双曲问题的有限元后验误差估计至今没有得到很好的解决.本文对d维区域上一阶双曲问题的k次间断有限元逼近提出了一种新的后验误差分析方法, 进而建立了间断有限元解在DG范数下(强于L2范数)基于误差余量型的后验误差估计. 数值计算验证了本文理论分析的有效性. 本文方法也适用于其他变分问题有限元逼近的后验误差分析.  相似文献   

4.
双曲型方程的质量集中有限元法   总被引:2,自引:0,他引:2  
用有限元法求解波动方程有许多工作,在此不多加阐述,本文针对线性双曲型方程采用质量集中有限元法,该方法产生于用特定的数值积分公式计算普通有限元法中的内积积分,这种方法具有较好的数值稳定性。  相似文献   

5.
In this paper, we consider the nonconforming finite element approximations of fourth order elliptic perturbation problems in two dimensions. We present an a posteriori error estimator under certain conditions, and give an h-version adaptive algorithm based on the error estimation. The local behavior of the estimator is analyzed as well. This estimator works for several nonconforming methods, such as the modified Morley method and the modified Zienkiewicz method, and under some assumptions, it is an optimal one. Numerical examples are reported, with a linear stationary Cahn-HiUiard-type equation as a model problem.  相似文献   

6.
In this paper we continue the study of discontinuous Galerkin finite element methods for nonlinear diffusion equations following the direct discontinuous Galerkin (DDG) meth- ods for diffusion problems [17] and the direct discontinuous Galerkin (DDG) methods for diffusion with interface corrections [18]. We introduce a numerical flux for the test func- tion, and obtain a new direct discontinuous Galerkin method with symmetric structure. Second order derivative jump terms are included in the numerical flux formula and explicit guidelines for choosing the numerical flux are given. The constructed scheme has a sym- metric property and an optimal L2 (L2) error estimate is obtained. Numerical examples are carried out to demonstrate the optimal (k + 1)th order of accuracy for the method with pk polynomial approximations for both linear and nonlinear problems, under one-dimensional and two-dimensional settings.  相似文献   

7.
In this paper, the linear finite element approximation to the positive and symmetric,linear hyperbolic systems is analyzed and an O(h^2) order error estimate is established under the conditions of strongly regular triangulation and the H^3-regularity for the exact solutions. The convergence analysis is based on some superclose estimates derived in this paper. Our method and result here are also applicable to general hyperbolic problems.Finally, we discuss the linearized shallow water system of equations.  相似文献   

8.
This paper is concerned with developing accurate and efficient numerical methods for one-dimensional fully nonlinear second order elliptic and parabolic partial differential equations (PDEs). In the paper we present a general framework for constructing high order interior penalty discontinuous Galerkin (IP-DG) methods for approximating viscosity solutions of these fully nonlinear PDEs. In order to capture discontinuities of the second order derivative uxx of the solution u, three independent functions p1,p2 and p3 are introduced to represent numerical derivatives using various one-sided limits. The proposed DG frame- work, which is based on a nonstandard mixed formulation of the underlying PDE, embeds a nonlinear problem into a mostly linear system of equations where the nonlinearity has been modified to include multiple values of the second order derivative uxz. The proposed framework extends a companion finite difference framework developed by the authors in [9] and allows for the approximation of fully nonlinear PDEs using high order polynomials and non-uniform meshes. In addition to the nonstandard mixed formulation setting, another main idea is to replace the fully nonlinear differential operator by a numerical operator which is consistent with the differential operator and satisfies certain monotonicity (called g-monotonicity) properties. To ensure such a g-monotonicity, the crux of the construction is to introduce the numerical moment, which plays a critical role in the proposed DG frame- work. The g-monotonicity gives the DG methods the ability to select the mathematically "correct" solution (i.e., the viscosity solution) among all possible solutions. Moreover, the g-monotonicity allows for the possible development of more efficient nonlinear solvers as the special nonlinearity of the algebraic systems can be explored to decouple the equations. This paper also presents and analyzes numerical results for several numerical test problems which are used to guage the accuracy and efficiency of the proposed DG methods.  相似文献   

9.
In this work, we solve a long-standing open problem: Is it true that the convergence rate of the Lions' Robin-Robin nonoverlapping domain decomposition (DD) method can be constant, independent of the mesh size h? We closed this old problem with a positive answer. Our theory is also verified by numerical tests.  相似文献   

10.
In this paper, superconvergence of the lowest order Raviart-Thomas mixed finite element approximation for second order Neumann boundary value problem on fishbone shape meshes is analyzed. The main term of the error between the exact solution and the finite element interpolating function is determined by Bramble-Hilbert lemma on the individual finite element. A part of the main term of the error on two adjacent finite elements can be cancelled along the special direction, and thus the higher order error estimate is obtained on the whole domain by summation. Compared with the general finite element error estimate,the convergence rate can be increased from order one to order two in L2-norm by postprocessing superconvergence technique.  相似文献   

11.
In this paper, we consider the finite element method and discontinuous Galerkin method for the stochastic Helmholtz equation in R^d (d = 2, 3). Convergence analysis and error estimates are presented for the numerical solutions. The effects of the noises on the accuracy of the approximations are illustrated. Numerical experiments are carried out to verify our theoretical results.  相似文献   

12.
In this paper, using a bubble function, we construct a cuboid element to solve the fourth order elliptic singular perturbation problem in three dimensions. We prove that the nonconforming CO-cuboid element converges in the energy norm uniformly with respect to the perturbation parameter.  相似文献   

13.
In this paper, we introduce a mixed finite element method on a staggered mesh for the numerical solution of the steady state Navier-Stokes equations in which the two components of the velocity and the pressure are defined on three different meshes. This method is a conforming quadrilateral Q1 × Q1 - P0 element approximation for the Navier-Stokes equations. First-order error estimates are obtained for both the velocity and the pressure. Numerical examples are presented to illustrate the effectiveness of the proposed method.  相似文献   

14.
In this paper we investigate the performance of the weighted essential non-oscillatory (WENO) methods based on different numerical fluxes, with the objective of obtaining better performance for the shallow water equations by choosing suitable numerical fluxes. We consider six numerical fluxes, i.e., Lax-Friedrichs, local Lax-Friedrichs, Engquist-Osher, Harten-Lax-van Leer, HLLC and the first-order centered fluxes, with the WENO finite volume method and TVD Runge-Kutta time discretization for the shallow water equations. The detailed numerical study is performed for both one-dimensional and two-dimensional shallow water equations by addressing the property, and resolution of discontinuities. issues of CPU cost, accuracy, non-oscillatory  相似文献   

15.
In this paper, we study adaptive finite element discretisation schemes for a class of parameter estimation problem. We propose to efficient algorithms for the estimation problem use adaptive multi-meshes in developing We derive equivalent a posteriori error estimators for both the state and the control approximation, which particularly suit an adaptive multi-mesh finite element scheme. The error estimators are then implemented and tested with promising numerical results.  相似文献   

16.
对二维Neumann边界条件的线性双曲型方程建立了紧交替方向的隐格式.利用方程和边界条件得到在空间上的三阶与五阶导数的边界值,进而在内点、边界内点和边界角点分别建立9点、6点和4点紧差分格式;通过引进新的范数和L2范数估计L范数;借助能量估计、Gronwall不等式和Schwarz不等式等技巧,详细分析了差分格式在无穷范数下关于时间和空间分别为二阶和四阶收敛性,并给出了稳定性结果;通过数值算例,验证了理论分析结果.  相似文献   

17.
An a posteriori error estimator is obtained for a nonconforming finite element approximation of a linear elliptic problem, which is derived from a corresponding unbounded domain problem by applying a nonlocal approximate artificial boundary condition. Our method can be easily extended to obtain a class of a posteriori error estimators for various conforming and nonconforming finite element approximations of problems with different artificial boundary conditions. The reliability and efficiency of our a posteriori error estimator are rigorously proved and are verified by numerical examples.  相似文献   

18.
We propose and analyze a posteriori energy-norm error estimates for weighted interior penalty discontinuous Galerkin approximations of advection-diffusion-reaction equations with heterogeneous and anisotropic diffusion. The weights, which play a key role in the analysis, depend on the diffusion tensor and are used to formulate the consistency terms in the discontinuous Galerkin method. The error upper bounds, in which all the constants are specified, consist of three terms: a residual estimator which depends only on the elementwise fluctuation of the discrete solution residual, a diffusive flux estimator where the weights used in the method enter explicitly, and a non-conforming estimator which is nonzero because of the use of discontinuous finite element spaces. The three estimators can be bounded locally by the approximation error. A particular attention is given to the dependency on problem parameters of the constants in the local lower error bounds. For moderate advection, it is shown that full robustness with respect to diffusion heterogeneities is achieved owing to the specific design of the weights in the discontinuous Galerkin method, while diffusion anisotropies remain purely local and impact the constants through the square root of the condition number of the diffusion tensor. For dominant advection, it is shown, in the spirit of previous work by Verfiirth on continuous finite elements, that the local lower error bounds can be written with constants involving a cut-off for the ratio of local mesh size to the reciprocal of the square root of the lowest local eignevalue of the diffusion tensor.  相似文献   

19.
This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that the a posteriori error bounds depends on ε^-1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct at2 adaptive algorithm for computing the solution of the Cahn- Hilliard equation and its sharp interface limit, the Hele-Shaw flow. Numerical experiments are presented to show the robustness and effectiveness of the new error estimators and the proposed adaptive algorithm.  相似文献   

20.
For large and sparse saddle point problems, Zhu studied a class of generalized local Hermitian and skew-Hermitian splitting iteration methods for non-Hermitian saddle point problem [M.-Z. Zhu, Appl. Math. Comput. 218 (2012) 8816-8824 ]. In this paper, we further investigate the generalized local Hermitian and skew-Hermitian splitting (GLHSS) iteration methods for solving non-Hermitian generalized saddle point problems. With different choices of the parameter matrices, we derive conditions for guaranteeing the con- vergence of these iterative methods. Numerical experiments are presented to illustrate the effectiveness of our GLHSS iteration methods as well as the preconditioners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号