首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The empirical energy parameters for a calcium ion and its ligands in proteins were determined within a pairwise additive framework. The interaction energies of Ca2+-water, Ca2+-peptide group and Ca2+-carboxyl group systems were calculated using the ab initio molecular orbital method with basis sets of double zeta quality including polarization or diffuse functions. The resulting potential energy surfaces served as references for the determination of the nonbonded parameters in the empirical energy function. The nonadditive corrections for the Ca2+-ligand pair potentials are incorporated implicitly in the nonbonded paremeters by treating three-body (1:2 complex) or seven-body (1:6 complex) systems in reference calculations. Ligand polarizations induced by Ca2+ are estimated from the partial atomic charges of two-body (1:1 complex) systems. The charge sets were determined by scaling so as to reproduce the reference potential energy surfaces. The newly determined parameter set was used in a stochastic boundary molecular dynamics simulation of phospholipase A2. The solvated structure of the Ca2+-binding site obtained from an X-ray crystallographic study is well reproduced by the parameter set.  相似文献   

2.
In the temperature range between 4.2 and 300 K, the EPR spectrum of the impurity Fe3+ ion in the organic polyparaphenylene has been investigated. An effect developed as an unusual temperature change of Fe3+ EPR spectrum has been revealed. The EPR spectrum of powder sample consists of two resonance lines. Line 1 with the effective g‐value equal to g1 = 4.21 ± 0.05 is of the maximum intensity at T = 4.2 K. With temperature increase, the intensity of line 1 decreases until vanishing. Line 2 is observed over the whole temperature range. For T = 300 K, the g‐value of line 2 is g2 = 2.00 ± 0.09. To study the structure of magnetic ion molecular environment and define nonequivalent positions of the magnetic ion in polyparaphenylene, a calculation was done of the energy of Fe3+ magnetic ion for various possible molecular environments. It is shown that in polyparaphenylene for the Fe3+ magnetic ion there are two different stationary molecular environments. The obtained model of magnetic ion molecular environment was used to explain the temperature dependence of the EPR spectrum. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

3.
4.
Calcium plays a vital role in the human body and especially in the central nervous system. Precise maintenance of Ca2+ levels is very crucial for normal cell physiology and health. The deregulation of calcium homeostasis can lead to neuronal cell death and brain damage. To study this functional role played by Ca2+ in the brain noninvasively by using magnetic resonance imaging, we have synthesized a new set of Ca2+‐sensitive smart contrast agents (CAs). The agents were found to be highly selective to Ca2+ in the presence of other competitive anions and cations in buffer and in physiological fluids. The structure of CAs comprises Gd3+‐DO3A (DO3A=1,4,7‐tris(carboxymethyl)‐1,4,7,10‐tetraazacyclododecane) coupled to a Ca2+ chelator o‐amino phenol‐N,N,O‐triacetate (APTRA). The agents are designed to sense Ca2+ present in extracellular fluid of the brain where its concentration is relatively high, that is, 1.2–0.8 mM . The determined dissociation constant of the CAs to Ca2+ falls in the range required to sense and report changes in extracellular Ca2+ levels followed by an increase in neural activity. In buffer, with the addition of Ca2+ the increase in relaxivity ranged from 100–157 %, the highest ever known for any T1‐based Ca2+‐sensitive smart CA. The CAs were analyzed extensively by the measurement of luminescence lifetime measurement on Tb3+ analogues, nuclear magnetic relaxation dispersion (NMRD), and 17O NMR transverse relaxation and shift experiments. The results obtained confirmed that the large relaxivity enhancement observed upon Ca2+ addition is due to the increase of the hydration state of the complexes together with the slowing down of the molecular rotation and the retention of a significant contribution of the water molecules of the second sphere of hydration.  相似文献   

5.
The behavior of four derivative copolymers of poly(acrylic acid) were modeled in dilute aqueous polymer solutions with calcium counterions. Molecular dynamics simulations of negatively charged copolymer models in the presence of different Ca2+ ion concentrations at 300 K, using an effective molecular dielectric constant of 3.5, were performed. Analyses of the dependence of the total potential energy, the counterion binding energy and the time average chain segment length of each of the copolymer models on Ca2+ ion concentration was performed. One of the copolymer models was predicted to have the greatest propensity to capture the calcium counterions. Unusually strong binding interactions between the copolymer and Ca2+ counterions were identified for this copolymer. Structure-binding analysis led to the identification of a specific Ca2+ binding site sequence and geometry as being responsible for the strong counterion binding. The events that take place during the calcium capturing process at this binding-site are discussed in terms of intramolecular dynamics and intermolecular electrostatic interactions. The existence of this specific Ca2+ binding sequence is a clear example of how property optimization studies in the laboratory mimic breakthrough outcomes realized in natural evolution.  相似文献   

6.
Calcium ATPase is a member of the P‐type ATPase, and it pumps calcium ions from the cytoplasm into the reticulum against a concentration gradient. Several X‐ray structures of different conformations have been solved in recent years, providing basis for elucidating the active transport mechanism of Ca2+ ions. In this work, molecular dynamics (MD) simulations were performed at atomic level to investigate the dynamical process of calcium ions moving from the outer mouth of the protein to their binding sites. Five initial locations of Ca2+ ions were considered, and the simulations lasted for 2 or 6 ns, respectively. Specific pathways leading to the binding sites and large structural rearrangements around binding sites caused by uptake of calcium ions were identified. A cooperative binding mechanism was observed from our simulation. Firstly, the first Ca2+ ion binds to site I , and then, the second Ca2+ ion approaches. The interactions between the second Ca2+ and the residues around site I disturb the binding state of site I and weaken its binding ability for the first bound Ca2+. Because of the electrostatic repulsion of the second Ca2+ and the electrostatic attraction of site II , the first bound Ca2+ shifts from site I to site II . Concertedly, the second Ca2+ binds to site I , forming a binding state with two Ca2+ ions, one at site I and the other at site II . Both of Glu908 and Asp800 coordinate with the two Ca2+ ions simultaneously during the concerted binding process, which is believed to be the hinge to achieve the concerted binding. In our simulations, four amino acid residues that serve as the channel to link the outer mouth and the binding sites during the binding process were recognized, namely Tyr837, Tyr763, Asn911, and Ser767. The analyses regarding the activity of the proteins via mutations of some key residues also supported our cooperative mechanism. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

7.
A series of quadruple‐stranded Na+ and Ca2+ complexes with octadentate cyclen ligands was synthesized to produce complexes that contained four different side‐arm combinations (one triazole? coumarin group and three pyridine groups ( 1 ), four pyridine groups ( 2 ), one triazole? coumarin group and three quinoline groups ( 3 ), and four quinoline groups ( 4 )). X‐ray crystallographic analysis revealed that no significant changes occurred in the stereostructure of these complexes upon replacing one pyridine group with a triazole? coumarin moiety, or by replacing Na+ ions with Ca2+ ions, although the coordination number of the complexes in the solid state decreased when pyridine groups were replaced by quinoline groups. In solution, all of the side arms were arranged in a propeller‐like pattern to yield an enantiomer pair of Δ and Λ forms in each metal complex. The addition of a tert‐butoxycarbonyl (Boc)‐protected amino acid anion, that is, a coordinative chiral carboxylate anion, to the cyclen? Ca2+ complex induced circular dichroism (CD) signals in the aromatic region by forming a 1:1 mixture of diastereomeric ternary complexes with opposite complex chirality, whilst the corresponding Na+ complexes rarely showed any response. In complexes 1 ‐Ca2+ and 3 ‐Ca2+, this chirality‐transfer process was efficiently followed by considering the induction of the CD signals at two different wavelengths, that is, the coumarin‐chromophore region and the aza‐aromatic region. The sign and intensity of the CD signal were significantly dependent on both the nature of the aza‐aromatic moiety and the enantiomeric purity of the external anion. These Ca2+ complexes worked as effective probes for the determination of the enantiomeric excess of the chiral anion. The cyclen? Ca2+ complexes also interacted with the non‐coordinative Δ‐TRISPHAT anion through an ion‐pairing mechanism to achieve chirality transfer from the anion to the metal complex; both complexes 1 ‐Ca2+ and 3 ‐Ca2+ clearly showed induced CD signals in the coumarin‐chromophore region, owing to ion‐paring interactions with the Δ‐TRISPHAT anion. Thus, the proper combination of an octadentate cyclen ligand and a metal center demonstrated effective chirality transfer.  相似文献   

8.
Studying the effect of alkali and alkaline‐earth metal cations on Langmuir monolayers is relevant from biophysical and nanotechnological points of view. In this work, the effect of Na+ and Ca2+ on a model of an anionic Langmuir lipid monolayer of dimyristoylphosphatidate (DMPA?) is studied by molecular dynamics simulations. The influence of the type of cation on lipid structure, lipid–lipid interactions, and lipid ordering is analyzed in terms of electrostatic interactions. It is found that for a lipid monolayer in its solid phase, the effect of the cations on the properties of the lipid monolayer can be neglected. The influence of the cations is enhanced for the lipid monolayer in its gas phase, where sodium ions show a high degree of dehydration compared with calcium ions. This loss of hydration shell is partly compensated by the formation of lipid–ion–lipid bridges. This difference is ascribed to the higher charge‐to‐radius ratio q/r for Ca2+, which makes ion dehydration less favorable compared to Na+. Owing to the different dehydration behavior of sodium and calcium ions, diminished lipid–lipid coordination, lipid–ion coordination, and lipid ordering are observed for Ca2+ compared to Na+. Furthermore, for both gas and solid phases of the lipid Langmuir monolayers, lipid conformation and ion dehydration across the lipid/water interface are studied.  相似文献   

9.
Enantiomerization of octahedral tris(α‐diimine)–transition metal complexes was investigated by enantioselective dynamic MEKC. Varying both the transition metal ion (Fe2+, Fe3+, and Ni2+) and the bidentate diimine ligand (1,10‐phenanthroline and 2,2′‐bipyridyl), the enantiomer separations were performed either in a 100 mM sodium tetraborate buffer (pH 9.3) or in a 100 mM sodium tetraborate/sodium dihydrogenphosphate buffer (pH 8.0) both containing sodium cholate as chiral surfactant. The unified equation of dynamic chromatography was employed to determine apparent reaction rate constants from the electropherograms showing distinct plateau formation. Apparent activation parameters ΔH? and ΔS? were calculated from temperature‐dependent measurements between 10.0 and 35.0°C in 2.5 K steps. It was found that the nature of the central metal ion and the ligand strongly influence the enantiomerization barrier. Surprisingly, complexes containing the 2,2′‐bipyridyl ligand show highly negative activation entropies between ?103 and ?116 J (K mol)?1 while the activation entropy of tris(1,10‐phenanthroline) complexes is positive indicating a different mechanism of interconversion. Furthermore, it was found that the Ni2+ complexes are stereostable under the conditions investigated here making them a lucent target as enantioselective catalysts.  相似文献   

10.
Upon binding their metal ion cofactors, Ca2+‐regulated photoproteins display a rapid increase of light signal, which reaches its peak within milliseconds. In the present study, we investigate bioluminescence kinetics of the entire photoprotein family. All five recombinant hydromedusan Ca2+‐regulated photoproteins—aequorin from Aequorea victoria, clytin from Clytia gregaria, mitrocomin from Mitrocoma cellularia and obelins from Obelia longissima and Obelia geniculata—demonstrate the same bioluminescent kinetics pattern. Based on these findings, for the first time we propose a unanimous kinetic model describing the bioluminescence mechanism of Ca2+‐regulated photoproteins.  相似文献   

11.
Magnetic dipole interactions are dominate in quasi one‐dimensional (1D) molecular magnetic materials, in which TbNcPc units (Tb3+=terbium(III) ion, Nc2?=naphthalocyaninato, Pc2?=phthalocyaninato) adopt a structure similar to TbPc2 single‐molecule magnets (SMMs). The magnetic properties of the [TbNcPc]0/+ (neutral 1 and cationic 2 ) with 1D structures are significantly different from those of a magnetically diluted sample ( 3 ). In particular, the magnetic relaxation time (τ) of 2 in the low‐temperature region is five orders of magnitude slower than that of 3 . Furthermore, the coercivity (HC) of 2 remained up to about 20 K. The single‐ion anisotropy of Tb3+ ions in a 1D structure and the magnetic dipole interactions acting among molecules determines the direction of the magnetic properties. These results show that the spin dynamics can be improved by manipulating the arrangement of SMMs in the solid state.  相似文献   

12.
Structural and dynamical properties of Ge (II) in aqueous solution have been investigated using the novel ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) formalism. The first and second hydration shells were treated by ab initio quantum mechanics at restricted Hartree–Fock (RHF) level using the cc‐pVDZ‐PP basis set for Ge (II) and Dunning double‐ζ plus polarization basis sets for O and H. Besides ligand exchange processes and mean ligand residence times to observe dynamics, tilt‐ and theta‐angle distributions along with an advanced structural parameter, namely radial and angular distribution functions (RAD) for different regions were also evaluated. The combined radial and angular distribution depicted through surface plot and contour map is presented to provide a detailed insight into the density distribution of water molecules around the Ge2+ ion. A strongly distorted hydration structure with two trigonal pyramidal substructures within the first hydration shell is observed, which demonstrates the lone‐pair influence and provides a new basis for the interpretation of the catalytic and pharmacological properties of germanium coordination compounds. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

13.
The development of novel ionophores for ion‐selective sensors is a time‐consuming and tedious process requiring synthesis of candidate substances, preparation of plasticized polymeric membranes, and their thorough characterization with traditional protocols to assess sensitivity, selectivity and detection limits for target ions. The vast amount of literature data accumulated on various ion‐selective sensors allows for significant facilitation of the development through in silico experiments. In this report, we performed the feasibility study on the prediction of potentiometric Mg2+/Ca2+ selectivity for various amide ligands using quantitative structure‐property relationship (QSPR) modeling. The approach proved to be promising for ionophore screening purposes with achieved precision in prediction of the selectivity coefficient logK(Mg2+/Ca2+) of 0.5 in the range from ?1.7 to +2.3. The study also shows a route for prediction of new potential ionophores with high selectivity values.  相似文献   

14.
The reaction of C2(A3Πu) with CH4 has been investigated over a wide temperature range 200–3,000 K by direct ab initio dynamics method at the BMC‐CCSD//BB1K/6‐311+G(2d,2p) level of theory. The optimized geometries and frequencies of the stationary points are calculated at the BB1K/6‐311+G(2d,2p) level, and then the energy profiles of the reactions are refined using the BMC‐CCSD method. The activation barrier height for H‐abstraction reaction was calculated to be 4.44 kcal/mol in temperature range (337–605 K), and the electron transfer behavior was also analyzed by quasi‐restricted molecular orbital method in detail. The canonical variational transition‐state theory (CVT) with the small curvature tunneling (SCT) correction method is used to calculate the rate constants over a wide temperature range 200–3,000 K. The theoretical results shows that variational effect is to some extent large in lower temperature range, and small curvature and tunneling effect play important roles to the H‐atom abstraction only at lower temperatures. The CVT/SCT rate constants are in good agreement with the available experimental results. Our theoretical study is expected to provide a direct insight into the reaction mechanism and may be useful for estimating the kinetics of the title reaction over a wide temperature range where no experimental data are available so far. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

15.

The enzyme, cutinase from Saccharomonospora viridis AHK190 (Cut190), can hydrolyze the inner block of polyethylene terephthalate (PET). Cut190 has a unique feature that both its activity and thermal stability are increased upon Ca2+ binding. In consideration of the glass transition temperature of PET, which is between 60 and 65 °C, the increased activity and thermal stability are of great interest to apply for PET bio-recycling. Our previous mutational analysis showed that the S226P/R228S mutant (Cut190*) has a higher activity and thermal stability than those of the wild type. In this study, we analyzed the folding thermodynamics of the inactive mutant of Cut190*, Cut190*S176A, using circular dichroism and differential scanning calorimetry. The results show that the denaturation temperature increases from 54 to 71 °C due to the addition of 250 mM Ca2+, in a Ca2+ concentration-dependent manner. The increased thermal stability is mainly due to the increased enthalpy change, partially compensated by the increased entropy change. Based on the crystal structure of Cut190*S176A bound to Ca2+, molecular dynamics simulations were carried out to analyze the effects of Ca2+ on the structural dynamics, showing that the Ca2+-bound structure fluctuated less than the Ca2+-free structure. Structural analysis indicates that Ca2+ binding increases the intramolecular interactions of the enzyme, while decreasing its fluctuation, which are in good correlation with the experimental results of the folding thermodynamics.

  相似文献   

16.
A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg2+, Ca2+, and Sr2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV‐absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg2+, Ca2+, and Sr2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg2+, Ca2+, and Sr2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S /N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded.  相似文献   

17.
The aim of this report is to present the electrospray ionization mass spectrometry results of the non‐covalent interaction of two biologically active ligands, N‐1 ‐ (p‐toluenesulfonyl)cytosine, 1‐TsC, 1 and N‐1 ‐ methanesulfonylcytosine, 1‐MsC, 2 and their Cu(II) complexes Cu(1‐TsC‐N3)2Cl2, 3 and Cu(1‐MsC‐N3)2Cl2 and 4 with biologically important cations: Na+, K+, Ca2+, Mg2+ and Zn2+. The formation of various complex metal ions was observed. The alkali metals Na+ and K+ formed clusters because of electrostatic interactions. Ca2+ and Mg2+ salts produced the tris ligand and mixed ligand complexes. The interaction of Zn2+ with 1–4 produced monometal and dimetal Zn2+ complexes as a result of the affinity of Zn2+ ions toward both O and N atoms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The family of calcium-binding proteins (CaBPs) consists of dozens of members and contributes to all aspects of the cell’s function, from homeostasis to learning and memory. However, the Ca2+-binding mechanism is still unclear for most of CaBPs. To identify the Ca2+-binding sites of CaBPs, this study presented a computational approach which combined the fragment homology modeling with molecular dynamics simulation. For validation, we performed a two-step strategy as follows: first, the approach is used to identify the Ca2+-binding sites of CaBPs, which have the EF-hand Ca2+-binding site and the detailed binding mechanism. To accomplish this, eighteen crystal structures of CaBPs with 49 Ca2+-binding sites are selected to be analyzed including calmodulin. The computational method identified 43 from 49 Ca2+-binding sites. Second, we performed the approach to large-conductance Ca2+-activated K+ (BK) channels which don’t have clear Ca2+-binding mechanism. The simulated results are consistent with the experimental data. The computational approach may shed some light on the identification of Ca2+-binding sites in CaBPs.  相似文献   

19.
The preparation, crystal structures, and thermal properties of [Ca(pyr)2(4‐nba)2]n ( 1 ) (pyr = pyrazole; 4‐nba = 4‐nitrobenzoate) {[Ca(H2O)2(3‐npth)] · H2O}n ( 2 ) (3‐npth = 3‐nitrophthalate), [Mg(H2O)5(3‐npth)] · 2H2O ( 3 ), and [Mg(H2O)4(2‐nba)2] ( 4 ) (2‐nba = 2‐nitrobenzoate) are reported. The anhydrous CaII compound 1 and the diaqua CaII‐3‐nitrophthalate monohydrate 2 are one‐dimensional coordination polymers containing a hexacoordinate CaII ion located on a center of inversion in 1 and a heptacoordinated CaII ion in 2 . In 1 , the 4‐nitrobenzoate moiety acts as a μ2‐bridging bidentate ligand, whereas the 3‐nitrophthalate anion exhibits a μ3‐bridging pentadentate coordination mode in 2 . The hexacoordinate MgII‐containing compounds 3 and 4 do not contain a [Mg(H2O)6]2+ unit and the central MgII ion is coordinated to at least one monodentate carboxylate unit namely the monodentate 3‐npth molecule in 3 and two trans monodentate 2‐nba molecules in 4 . Hydrogen bonding between the lattice water molecules results in the formation of a water dimer in 3 . A comparative study of 17 alkaline earth nitrocarboxylates is described.  相似文献   

20.
《Electroanalysis》2017,29(3):821-827
An all‐solid‐state polymeric membrane Ca2+‐selective electrode based on hydrophobic octadecylamine‐functionalized graphene oxide has been developed. The hydrophobic composite in the ion‐selective membrane not only acts as a transduction element to improve the potential stability for the all‐solid‐state Ca2+‐selective electrode, but also is used to immobilize Ca2+ ionophore with lipophilic side chains through hydrophobic interactions. The developed all‐solid‐state Ca2+‐selective electrode shows a stable potential response in the linear range of 3.0×10−7–1.0×10−3 M with a slope of 24.7±0.3 mV/dec, and the detection limit is (1.6±0.2 )×10−7 M (n =3). Additionally, due to the hydrophobicity and electrical conductivity of the composite, the proposed all‐solid‐state ion‐selective electrode exhibits an improved stability with the absence of water layer between the ion‐selective membrane and the underlying glassy carbon electrode. This work provides a simple, efficient and low‐cost methodology for developing stable and robust all‐solid‐state ion‐selective electrode with ionophore immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号