首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An M/G/1 retrial queue with two-phase service and feedback is studied in this paper, where the server is subject to starting failures and breakdowns during service. Primary customers get in the system according to a Poisson process, and they will receive service immediately if the server is available upon arrival. Otherwise, they will enter a retrial orbit and are queued in the orbit in accordance with a first-come-first-served (FCFS) discipline. Customers are allowed to balk and renege at particular times. All customers demand the first "essential"service, whereas only some of them demand the second "multi-optional" service. It is assumed that the retrial time, service time and repair time of the server are all arbitrarily distributed.The necessary and sufficient condition for the system stability is derived. Using a supplementary variable method, the steady-state solutions for some queueing and reliability measures of the system are obtained.  相似文献   

2.
We consider an M [X]/G/1 retrial queue subject to breakdowns where the retrial time is exponential and independent of the number of customers applying for service. If a coming batch of customers finds the server idle, one of the arriving customers begins his service immediately and the rest joins a retrial group (called orbit) to repeat his request later; otherwise, if the server is busy or down, all customers of the coming batch enter the orbit. It is assumed that the server has a constant failure rate and arbitrary repair time distribution. We study the ergodicity of the embedded Markov chain, its stationary distribution and the joint distribution of the server state and the orbit size in steady-state. The orbit and system size distributions are obtained as well as some performance measures of the system. The stochastic decomposition property and the asymptotic behavior under high rate of retrials are discussed. We also analyse some reliability problems, the k-busy period and the ordinary busy period of our retrial queue. Besides, we give a recursive scheme to compute the distribution of the number of served customers during the k-busy period and the ordinary busy period. The effects of several parameters on the system are analysed numerically. I. Atencia’s and Moreno’s research is supported by the MEC through the project MTM2005-01248.  相似文献   

3.
有启动失败和可选服务的M/G/1重试排队系统   总被引:1,自引:0,他引:1  
考虑具有可选服务的M/G/1重试排队模型,其中服务台有可能启动失败.系统外新到达的顾客服从参数为λ的泊松过程.重试区域只允许队首顾客重试,重试时间服务一般分布.所有的顾客都必须接受必选服务,然而只有其中部分接受可选服务.通过嵌入马尔可夫链法证明了系统稳态的充要条件.利用补充变量的方法得到了稳态时系统和重试区域中队长分布.我们还得到重试期间服务台处于空闲的概率,重试区域为空的概率以及其他各种指标.并证出在把系统中服务台空闲和修理的时间定义为广义休假情况下也具有随机分解特征.  相似文献   

4.
A bulk-arrival single server queueing system with second multi-optional service and unreliable server is studied in this paper. Customers arrive in batches according to a homogeneous Poisson process, all customers demand the first "essential" service, whereas only some of them demand the second "multi-optional" service. The first service time and the second service all have general distribution and they are independent. We assume that the server has a service-phase dependent, exponentially distributed life time as well as a servicephase dependent, generally distributed repair time. Using a supplementary variable method, we obtain the transient and the steady-state solutions for both queueing and reliability measures of interest.  相似文献   

5.
有Bernoulli休假和可选服务的M/G/1重试反馈排队模型   总被引:1,自引:0,他引:1  
考虑具有可选服务的M/G/1重试反馈排队模型,其中服务台有Bernoulli休假策略.系统外新到达的顾客服从参数为λ的泊松过程.重试区域只允许队首顾客重试,重试时间服从一般分布.所有的顾客都必须接受必选服务,然而只有其中部分接受可选服务.每个顾客每次被服务完成后可以离开系统或者返回到重试区域.服务台完成一次服务以后,可以休假也可以继续为顾客服务.通过嵌入马尔可夫链法证明了系统稳态的充要条件.利用补充变量的方法得到了稳态时系统和重试区域中队长分布.我们还得到了重试期间服务台处于空闲的概率,重试区域为空的概率以及其他各种指标.并证出在系统中服务员休假和服务台空闲的时间定义为广义休假情况下也具有随机分解特征.  相似文献   

6.
An M/G/1 retrial queueing system with disasters and unreliable server is investigated in this paper. Primary customers arrive in the system according to a Poisson process, and they receive service immediately if the server is available upon their arrivals. Otherwise, they will enter a retrial orbit and try their luck after a random time interval. We assume the catastrophes occur following a Poisson stream, and if a catastrophe occurs, all customers in the system are deleted immediately and it also causes the server’s breakdown. Besides, the server has an exponential lifetime in addition to the catastrophe process. Whenever the server breaks down, it is sent for repair immediately. It is assumed that the service time and two kinds of repair time of the server are all arbitrarily distributed. By applying the supplementary variables method, we obtain the Laplace transforms of the transient solutions and also the steady-state solutions for both queueing measures and reliability quantities of interest. Finally, numerical inversion of Laplace transforms is carried out for the blocking probability of the system, and the effects of several system parameters on the blocking probability are illustrated by numerical inversion results.  相似文献   

7.
M. Martín  A. Gómez-Corral 《TOP》1995,3(2):285-305
Summary This paper is concerned with the study of a newM/G/1 retrial queueing system in which the delays between retrials are exponentially distributed random variables with linear intensityg(n)=α+nμ, when there aren≥1 customers in the retrial group. This new retrial discipline will be calledlinear control policy. We carry out an extensive analysis of the model, including existence of stationary regime, stationary distribution of the embedded Markov chain at epochs of service completions, joint distribution of the orbit size and the server state in steady state and busy period. The results agree with known results for special cases.  相似文献   

8.
讨论了有Bernoulli休假策略和可选服务的离散时间Geo/G/1重试排队系统.假定一旦顾客发现服务台忙或在休假就进入重试区域,重试时间服从几何分布.顾客在进行第一阶段服务结束后可以离开系统或进一步要求可选服务.服务台在每次服务完毕后,可以进行休假,或者等待服务下一个顾客.还研究了在此模型下的马尔可夫链,并计算了在稳态条件下的系统的各种性能指标以及给出一些特例和系统的随机分解.  相似文献   

9.
Single line queue with repeated demands   总被引:2,自引:0,他引:2  
We analyze a model of a queueing system in which customers can only call in to request service: if the server is free, the customer enters service immediately, but if the service system is occupied, the unsatisfied customer must break contact and reinitiate his request later. Such a customer is said to be in “orbit”. In this paper we consider three models characterized by the discipline governing the order of re-request of service from orbit. First, all customers in orbit can reapply, but are discouraged and reduce their rate of demand as more customers join the orbit. Secondly, the FCFS discipline operates for the unsatisfied customers in orbit. Finally, the LCFS discipline governs the customers in orbit and the server takes an exponentially distributed vacation after each service is completed. We calculate several characteristics quantities of such systems, assuming a general service-time distribution and different exponential distributions for the times between arrivals of first and repeat requests.  相似文献   

10.
We consider a multiserver retrial GI/G/m queue with renewal input of primary customers, interarrival time τ with rate , service time S, and exponential retrial times of customers blocked in the orbit. In the model, an arriving primary customer enters the system and gets a service immediately if there is an empty server, otherwise (if all m servers are busy) he joins the orbit and attempts to enter the system after an exponentially distributed time. Exploiting the regenerative structure of the (non-Markovian) stochastic process representing the total number of customers in the system (in service and in orbit), we determine stability conditions of the system and some of its variations. More precisely, we consider a discrete-time process embedded at the input instants and prove that if and , then the regeneration period is aperiodic with a finite mean. Consequently, this queue has a stationary distribution under the same conditions as a standard multiserver queue GI/G/m with infinite buffer. To establish this result, we apply a renewal technique and a characterization of the limiting behavior of the forward renewal time in the (renewal) process of regenerations. The key step in the proof is to show that the service discipline is asymptotically work-conserving as the orbit size increases. Included are extensions of this stability analysis to continuous-time processes, a retrial system with impatient customers, a system with a general retrial rate, and a system with finite buffer for waiting primary customers. We also consider the regenerative structure of a multi-dimensional Markov process describing the system. This work is supported by Russian Foundation for Basic Research under grants 04-07-90115 and 07-07-00088.  相似文献   

11.
This paper presents a multiserver retrial queueing system with servers kept apart, thereby rendering it impossible for one to know the status (idle/busy) of the others. Customers proceeding to one channel will have to go to orbit if the server in it is busy and retry after some time to some channel, not necessarily the one already tried. Each orbital customer, independently of others, chooses the server randomly according to some specified probability distribution. Further this distribution is identical for all customers. We assume that the same ‘orbit’ is used by all retrial customers, between repeated attempts, to access the servers. We derive the system state probability distribution under Poisson arrival process of external customers, exponentially distributed service times and linear retrial rates to access the servers. Several system state characteristics are obtained and numerical illustrations provided. AMS subject classification: Primary 60K25 60K20  相似文献   

12.
An M[X]/G/1 retrial G-queue with single vacation and unreliable server is investigated in this paper. Arrivals of positive customers form a compound Poisson process, and positive customers receive service immediately if the server is free upon their arrivals; Otherwise, they may enter a retrial orbit and try their luck after a random time interval. The arrivals of negative customers form a Poisson process. Negative customers not only remove the customer being in service, but also make the server under repair. The server leaves for a single vacation as soon as the system empties. In this paper, we analyze the ergodical condition of this model. By applying the supplementary variables method, we obtain the steady-state solutions for both queueing measures and reliability quantities.  相似文献   

13.
An M/G/1 retrial queueing system with additional phase of service and possible preemptive resume service discipline is considered. For an arbitrarily distributed retrial time distribution, the necessary and sufficient condition for the system stability is obtained, assuming that only the customer at the head of the orbit has priority access to the server. The steady-state distributions of the server state and the number of customers in the orbit are obtained along with other performance measures. The effects of various parameters on the system performance are analysed numerically. A general decomposition law for this retrial queueing system is established.  相似文献   

14.
In this paper, we consider a Geo/Geo/1 retrial queue with non-persistent customers and working vacations. The server works at a lower service rate in a working vacation period. Assume that the customers waiting in the orbit request for service with a constant retrial rate, if the arriving retrial customer finds the server busy, the customer will go back to the orbit with probability q (0≤q≤1), or depart from the system immediately with probability $\bar{q}=1-q$ . Based on the necessary and sufficient condition for the system to be stable, we develop the recursive formulae for the stationary distribution by using matrix-geometric solution method. Furthermore, some performance measures of the system are calculated and an average cost function is also given. We finally illustrate the effect of the parameters on the performance measures by some numerical examples.  相似文献   

15.
This paper investigates a batch arrival retrial queue with general retrial times, where the server is subject to starting failures and provides two phases of heterogeneous service to all customers under Bernoulli vacation schedules. Any arriving batch finding the server busy, breakdown or on vacation enters an orbit. Otherwise one customer from the arriving batch enters a service immediately while the rest join the orbit. After the completion of two phases of service, the server either goes for a vacation with probability p or may wait for serving the next customer with probability (1 − p). We construct the mathematical model and derive the steady-state distribution of the server state and the number of customers in the system/orbit. Such a model has potential application in transfer model of e-mail system.  相似文献   

16.
有两个服务阶段、反馈、强占型的M/G/1重试排队   总被引:1,自引:0,他引:1  
在假定重试区域中只有队首的顾客允许重试的条件下,重试时间是一般分布时,考虑具有两个服务阶段、反馈、强占型的M/G/1重试排队系统.得到了系统稳态的充要条件.求得稳态时系统队长和重试区域中队长分布及相关指标,并且得到了系统的随机分解性质.  相似文献   

17.
Consider a Geo/Geo/1 retrial queue with working vacations and vacation interruption, and assume requests in the orbit try to get service from the server with a constant retrial rate. During the working vacation period, customers can be served at a lower rate. If there are customers in the system after a service completion instant, the vacation will be interrupted and the server comes back to the normal working level. We use a quasi birth and death process to describe the considered system and derive a condition for the stability of the model. Using the matrix-analytic method, we obtain the stationary probability distribution and some performance measures. Furthermore, we prove the conditional stochastic decomposition for the queue length in the orbit. Finally, some numerical examples are presented.  相似文献   

18.
王晓春  朱翼隽  陈燕 《运筹与管理》2006,15(6):54-59,77
本文考虑了一个具有可选服务、反馈的M/G/1重试排队系统。在假定重试区域中只有队首的顾客允许重试的情况下,重试时间具有一般分布时,得到了系统稳态的充分必要条件。求得稳态时系统队长和重试区域中队长分布及相关指标。  相似文献   

19.
考虑一个具有到达损失、可选服务、反馈的M/G/1重试排队系统.在假定重试区域中顾客具有相互独立的指数重试时间的情况下,得到了系统的转移概率矩阵和系统稳态的充分必要条件.列出微分方程,求得稳态时系统队长和重试区域中队长分布及相关指标.  相似文献   

20.
We consider a retrial queueing model with collision arising from the specific communication protocolCSMAICD. Under the retrial control policy in which the retrial rate is inversely proportional to the number of customers in the retrial group, we derive the generating function of the limiting distribution of the number of customers in the retrial group at the moment when the channel is free. Using the theory of Markov regenerative processes, we also obtain the limiting distribution of the number of customers in the system at arbitrary time points.This paper was supported in part by the Non-Directed Research Fund, Korea Research Foundation, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号