首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The binding of nitrobenzene (NB) molecules from a solution of 4-nitrobenzene-diazonium-tetrafluoroborate on a Si(1 1 1)-H surface was investigated during the electrochemical processing in diluted sulphuric acid by means of infrared spectroscopic ellipsometry (IR-SE). The grafting was monitored by an increase in specific IR absorption bands due to symmetric and anti-symmetric NO2 stretching vibrations in the 1400–1700 cm?1 regime. The p- and s-polarized reflectances were recorded within 20 s for each spectrum only. NB molecules were detected when bonded to the Si(1 1 1) surface but not in the 2 mM solution itself. Oxide formation on the NB grafted Si surface was observed after drying in inert atmosphere and not during the grafting process in the aqueous solution.  相似文献   

2.
The covalent modification of large-area graphene sheets by p-(N-Maleimido)phenyl (p-MP) via electrochemical grafting of p-(N-Maleimido)benzenediazonium tetrafluoroborate (p-MBDT) is successfully demonstrated for the first time. The deposition process is monitored in-situ using the mass change of a graphene/SiNX:H/Au-coated quartz crystal microbalance(QCM) chip. The resulting mass increase correlates with a maleimide thickness of approximately 2.3 molecular layers. The presence of an infrared absorption band at 1726 cm-1 shows that maleimide groups were deposited on the substrates. Raman backscattering spectra reveal the presence of D and D′ modes of the graphene layer, indicating that p-MP forms covalent bonds to graphene. Using the mass change and charge transfer during the potential cycling the faradaic efficiency of the functionalisation process was deduced, which amounts to eta = 22%.  相似文献   

3.
Substitution of the peripheral H atoms in the corannulene molecule as a carbon nanostructure by OH, CH3, NH2 and NO2 groups on the molecular hydrogen physisorption was evaluated at MP2/6-31G(d) level of theory. Two orientations of hydrogen were used on the concave and convex sides of corannulene. It was seen that binding to the concave face is favored relative to the convex face. The average binding energy was calculated and corrected for the basis set superposition error (BSSE) using the counterpoise method. Results showed that binding energy varies depending upon the site and side of absorption. The electronic density, charge transfer and spatial prohibition of the substituted groups affects the binding energy. The increment of the electronic density because of the substitution of electron donor groups facilitates hydrogen adsorption and leads to larger binding energies than when H atoms are substituted by electron acceptor groups. Substitution of H atoms with each of the considered groups leads to decreasing of the HOMO–LUMO energy gap and so decreasing of the kinetic stability and increasing of the reactivity. The energy gap and binding energy for corannulene derivatives decreases in the order of: CH3 > OH > NH2 > NO2.  相似文献   

4.
Silicon is by far the most important semiconductor material in the microelectronic industry mostly due to the high quality of the Si/SiO2 interface. Consequently, applications requiring chemical functionalization of Si substrates have focused on molecular grafting of SiO2 surfaces. Unfortunately, there are practical problems affecting homogeneity and stability of many organic layers grafted on SiO2, such as silanes and phosphonates, related to polymerization and hydrolysis of Si–O–Si and Si–O–P bonds. These issues have stimulated efforts in grafting functional molecules on oxide-free Si surfaces, mostly with wet chemical processes. This review focuses therefore directly on wet chemical surface functionalization of oxide-free Si surfaces, starting from H-terminated Si surfaces. The main preparation methods of oxide-free H-terminated Si and their stability are first summarized. Functionalization is then classified into indirect substitution of H-termination by functional organic molecules, such as hydrosilylation, and direct substitution by other atoms (e.g. halogens) or small functional groups (e.g. OH, NH2) that can be used for further reaction. An emphasis is placed on a recently discovered method to produce a nanopattern of functional groups on otherwise oxide-free, H-terminated and atomically flat Si(1 1 1) surfaces. Such model surfaces are particularly interesting because they make it possible to derive fundamental knowledge of surface chemical reactions.  相似文献   

5.
Internalization of nano- and microparticles into live cells correlates closely with their potential applications, functions, cytotoxicity and intracellular drug delivery. Particularly, delivery of a large variety of cargoes such as proteins, peptides, nucleic acids and small particles into cells could be enhanced by some ligands such as Tat peptide. In this work, the ability of Tat mediated cellular uptake was assessed. The Tat peptide was covalently immobilized to fluorescein tagged SiO2 particles (FITC–SiO2–NH2 particles) with a diameter of 200 nm. BCA protein assay determined that the grafting amount of the Tat peptide could be controlled within a range of 0–3.5 μg/mg SiO2 particles by the Tat feeding amount. Surface immobilization of the Tat peptide did not bring apparent changes on the surface morphology and charge property of the SiO2–NH2 particles. By contrast, the surface charge of both the FITC–SiO2–NH2 particles and the FITC–SiO2–Tat particles was reversed from slight positive in Dulbecco's Modified Eagles Medium (DMEM) to slight negative in DMEM/fetal bovine serum, conveying adsorption of plasma proteins on the particles. Flow cytometry measurement showed that the FITC–SiO2–Tat particles were internalized by HepG2 cells with a significant faster rate and a higher number of particles than that of the FITC–SiO2–NH2 particles. Moreover, internalization of the Tat peptide decorated particles was less influenced by the low temperature at 4 °C. The Tat decoration affected the subcellular distribution of the particles as well, resulting in localization of the particles in the cell nucleus. No obvious cytotoxicity was detected for both the FITC–SiO2–NH2 particles and the FITC–SiO2–Tat particles.  相似文献   

6.
Electrochemical reduction of the 4-nitrophenyl diazonium salt in ionic liquid media has been investigated at carbon electrode. The ionic liquid chosen for this study was 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][TFSI]. The cyclic voltammetry study demonstrated the possibility of the electrochemical grafting of the nitrophenyl groups onto carbon electrode after the reduction of its corresponding diazonium in ionic liquid. The electrochemical characterization of the modified electrode achieved on ionic liquid displays the presence of the nitrophenyl group at the carbon surface. Moreover, the surface concentration of the attached group obtained in this media was found to be around 1.7 × 10−10 mol cm−2, this value may suggest the possibility of the formation of monolayer. Furthermore, the characterization of the modified electrode in [EMIM][TFSI] showed the conversion of some NO2-phenyl groups to NHOH-phenyl. This observation could indicate the presence of surface interaction between the reduced NO2-phenyl and the ionic liquid cation, thanks to the presence of acidic proton in the ionic liquid cation.  相似文献   

7.
A novel helical peptide containing β-(3-pyirdyl)-l-alanine (Pal) and l-glutamic acid (Glu) residues has been designed and successfully prepared as a model ligand of metalloenzyme active sites. The helical peptide, Boc-Leu-Aib-Glu-Leu-Leu-Pal-Aib-Leu-OEt (1) (Boc = tert-butoxycarbonyl, Aib = 2-aminoisobutylic acid) yields fine crystals as an acetnitrile solvate. The metal ion binding affinities of 1 were tested for CoCl2 using UV/vis, CD, Raman, and 1H NMR spectroscopies. The non-linear fitting calculations have revealed the 1:1 complex for CoCl2 with the binding constant 3.6 (±0.7) × 102 M−1.  相似文献   

8.
Three new hybrid organic/inorganic polymeric ligand-exchange chiral stationary phases were developed by radical chain transfer reaction and surface grafting on silica gel,and successfully used for the enantioseparations of DL-amino acids and DL-hydroxyl acids.The resolutions were achieved by using water containing 2.0×10~(-4) mol/L of CuAc_2 as a mobile phase,column temperature of 40℃,flow rate of 1.0mL/min and detection at UV 254 nm.The elution order of D-isomer before L-isomer was observed for all DL-amino acids resolved except DL-Pro.  相似文献   

9.
Binding of copper to three peptide fragments of prion (Cu2+ binding sites: 60–91, 92–96 and 180–193 amino acid residues) was investigated by anodic stripping voltammetry to determine the stoichiometries of Cu2+-prion peptide interactions. The method relies on the synthesis of N-terminally acetylated/C-terminally amidated peptide fragments of prion by solid-phase synthesis and direct monitoring of the oxidation current of copper in the absence and presence of each prion fragment. Titration curves of Cu2+ with Ac-PHGGGWGQ-NH2, Ac-GGGTH-NH2 and Ac-VNITKQHTVTTTT-NH2 were obtained in concentrations ranging from 8.52 × 10?7 to 5.08 × 10?6, 3.95 × 10?7 to 1.94 × 10?6 and 7.82 × 10?8 to 4.51 × 10?7 M, respectively. The acquired data were used to calculate the stoichiometries (one peptide per Cu2+ ion for all the three studied systems) and apparent dissociation constants (Kd = 4.37 × 10?8–3.50 × 10?10 M) for the three complexes.  相似文献   

10.
The ability of the Generalised AMBER Force Field (GAFF) of Kollman and co-workers to model the structures of bisphosphonate ligands, C(R1)(R2)(PO32−)2, important compounds in the treatment of bone cancer, by molecular mechanics methods is evaluated. The structure of 50 bisphosphonates and nine bisphosphonate esters were predicted and compared to their crystal structures. Partial charges were assigned from a RHF/6-31G1 single point calculation at the geometry of the crystal structure. Additional parameters required for GAFF were determined using the methods of the force field’s developers. The structures were found to be well replicated with virtually all bond lengths reproduced to within 0.015 Å, or within 1.2σ of the crystallographic mean. Bond angles were reproduced to within 1.9° (0.8σ). The observed gauche or anti conformation of the molecules was reproduced, although in several instances gauche conformations observed in the solid state energy-minimised into anti conformations, and vice versa. The interaction of MDP (R1 = R2 = H), HEDP (R1 = OH, R2 = CH3), APD (R1 = OH, R2 =  (CH2)2NH3+), alendronate (R1 = OH, R2 = (CH2)3NH3+) and neridronate (R1 = OH, R2 = (CH2)5NH3+) with the (001), (010) and (100) faces of hydroxyapaptite was examined by energy-minimising 20 random orientations of each ligand 20 Å from the mineral (where there is no interaction), and then at about 8 Å from the surface whereupon the ligand relaxes onto the surface. The difference in energy between the two systems is the interaction energy. In all cases interaction with hydroxyapatite caused a decrease in energy. When modelled with a dielectric constant of 78εo, non-bonded interactions dominate; electrostatic interactions become important when the dielectric constant is <10εo. Irrespective of the value of the dielectric constant used, the structure of the ligands on the hydroxyapatite surface is very similar. On the (001) face, both phosphonate groups interact near a surface Ca2+ ion. The magnitude of the exothermic interaction energy varies with molecular volume (MDP<HEDP<APD<alendronate) except for neridronate which interacts less effectively than alendronate because the long amino side chain folds in on itself and does not align with the surface of the mineral. The bisphosphonates adopt two conformations on the (010) face. In the first of these, found for MDP and 40% of the alendronate structures, both phosphonates interact with the surface and the side chain points away from the surface. Hence, the interaction energy is similar for both species. In the second conformation, adopted by the majority of ligands, one phosphonate and the Cα side chain interact with the surface. The interaction energy, the magnitude of which is very similar to that on the (001) face, increases with the molecular volume of the ligand, again with the exception of neridronate. Two conformations also occur on the (100) face. In the first conformation, only one of the phosphonate groups points towards the surface and the Cα side chain interacts with the surface; in the second conformation the Cα side chain interacts strongly with the surface and both phosphonate groups point away from the surface towards the solution. The first conformation, which is the more common, is energetically more favourable. Its magnitude is virtually insensitive to the nature of the side chain and is similar to the magnitude of the interaction energy on the other two faces. The magnitude of the second conformation increases with the size of the Cα side chain.  相似文献   

11.
Nanomechanical properties of end grafted polymer layers were studied by AFM based, colloidal probe compression measurements. Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) brush was grafted from planar Si surface and poly(methyl methacrylate) (PMAA) brush was grown on colloidal probe by surface initiated atom transfer radical polymerization. PMAA brush was further modified with adhesion promoting arginyl-glycyl-aspartic acid (RGD) peptide sequences. Force–distance curves were obtained for systems where the polymer brushes were probed on unmodified surfaces or face to each other. For each systems the grafting density of the polymer brush was determined applying a ‘box’ like polymer brush model based on the theory by de Gennes. ‘Average’ grafting density was calculated in cases when two polymer brushes face each other: RGD functionalized PMAA or PMAA against PSBMA. For our systems the values for the grafting density was between 0.04 and 0.11 nm?2. Furthermore the measured approach force–distance curves were fitted according to the Hertz model and the apparent Young’s modulus was determined for all measurements being in a range of around 250 kPa at physiological conditions.  相似文献   

12.
In this work, a new biosensor was prepared through immobilization of bovine liver catalase in a photoreticulated poly (vinyl alcohol) membrane at the surface of a conductometric transducer. This biosensor was used to study the kinetics of catalase–H202 reaction and its inhibition by cyanide. Immobilized catalase exhibited a Michaelis–Menten behaviour at low H202 concentrations (< 100 mM) with apparent constant KMapp = 84 ± 3 mM and maximal initial velocity VMapp = 13.4 μS min? 1. Inhibition by cyanide was found to be non-competitive and inhibition binding constant Ki was 13.9 ± 0.3 μM. The decrease of the biosensor response by increasing cyanide concentration was linear up to 50 μM, with a cyanide detection limit of 6 μM. In parallel, electrochemical characteristics of the catalase/PVA biomembrane and its interaction with cyanide were studied by cyclic voltammetry and impedance spectroscopy. Addition of the biomembrane onto the gold electrodes induced a significant increase of the interfacial polarization resistance RP. On the contrary, cyanide binding resulted in a decrease of Rp proportional to KCN concentration in the 4 to 50 μM range. Inhibition coefficient I50 calculated by this powerful label-free and substrate-free technique (24.3 μM) was in good agreement with that determined from the substrate-dependent conductometric biosensor (24.9 μM).  相似文献   

13.
Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, % Dg=191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum condition. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15 and 1.6 mmol/g-adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption.  相似文献   

14.
A promising hydrogen sulfide (H2S) sensor was prepared by electrodeposition of Au nanoclusters on glassy carbon electrode (GCE) and the surface structure was characterized by SEM and EDAX. These flower-like form Au nanoclusters, which were made up of highly dense clustering Au nanorods with an average diameter of 20 nm and length up to 80 nm, had an average size about 600 nm and uniformly distributed on the GCE surface. The electrocatalytic oxidation of H2S in gasoline was performed on this modified electrode, which had a satisfactory liner response to H2S in the range of 1–80 ppm and a detection limit of 0.45 ppm (s/n = 3). This sensor was sensitive, selective and stable.  相似文献   

15.
A novel functionalized multi walled carbon nanotube (MWCNT) was prepared through grafting with α-azido-poly(ethylene-co-butylene) (PEB-N3). The PEB-N3 was prepared through a two step procedure and grafted onto an industrial grade multi walled carbon nanotube (MWCNT) through a highly efficient nitrene addition. This novel nano filler was melt mixed into polypropylene (PP) and the composite was characterized by FT-IR spectroscopy, Raman spectroscopy, Scanning Electron Microscopy (SEM), Rheology and Dielectric Relaxation Spectroscopy (DRS). The analyses showed that composites with the novel filler had a high degree of discharge from the surface and higher conductivity compared to the pristine filler, illustrating an efficient conductive network in the composites. The composites showed low percolation thresholds of 0.3 wt.% (0.15 vol.%) as well as improved stability at a range of temperatures from 25–135 °C.  相似文献   

16.
The magnetic barium ferrite (BaFe12O19) hollow fibers with a high specific surface area about 22–38 m2 g?1, diameters around 1 μm and a ratio of the hollow diameter to the fiber diameter estimated about 1/2–2/3 have been prepared by the gel-precursor transformation process. The precursor and resulting ferrite hollow fibers were analyzed by thermo-gravimetric and differential scanning calorimetry, infrared spectroscopy, scanning electron microscopy and X-ray diffraction. The specific surface area was measured by the Brunauer–Emmett–Teller method. The gel formed at pH 5.5 has a good spinnability. A pure barium ferrite phase is formed after calcined at 750 °C for 2 h and fabricated of nanograins about 38 nm with a hexagonal plate-like morphology, which are increased to about 72 nm with the calcination temperature increased up to 1050 °C. The barium ferrite hollow fibers obtained at 750 °C for 2 h have a specific surface area 38.1 m2 g?1 and average pore size 6.5 nm and then the specific surface area and average pore size show a reduction tendency with the calcination temperature increasing from 750 to 1050 °C owing to the particle growth and fiber densification. These barium ferrite hollow fibers exhibit typical hard-magnetic materials characteristics and the formation mechanism for hollow structures is discussed.  相似文献   

17.
A composite electrode of Ni-ferrite/TiOx/Si(111) was synthesized by grafting Ni2+Fe2+Fe3+–LDH–TiCl3 (LDH: Layered Double Hydroxides) on n-Si(111) surface and calcined under 1100 °C. Photoelectric research results indicated that the electrode had good photovoltaic effects in an electrolyte solution containing 7.6 M HI and 0.05 M I2, while platinum plate was used as counter-electrode. The observed photo-voltages (Upv) and photocurrent densities (jpc) of the electrode were at ?0.75 V and 5.35 mA/cm2, respectively. Compared with electrodes of oxidized n-Si(111) crystal and n-Si(111) wafer covered by Ni-ferrites, jpc of the electrode Ni-ferrite/TiOx/Si(111) was increased greatly.  相似文献   

18.
Electrochemical grafting of anthraquinone (AQ) groups to gold electrodes was carried out in acetonitrile (ACN) and in aqueous acidic media (0.05 M H2SO4). For the first time, the covalent attachment of AQ to gold is demonstrated. Electrochemical quartz crystal microbalance (EQCM), atomic force microscopy (AFM) and cyclic voltammetry (CV) were used to characterise the AQ-modified Au electrodes. Electrografting from both solutions containing the corresponding diazonium salt yielded a strongly attached AQ layer. AFM examination showed that a multilayer AQ film was formed. The CV behaviour of the modified electrodes was tested in 0.1 M KOH and a quasi-reversible response was observed.  相似文献   

19.
《Comptes Rendus Chimie》2015,18(1):63-74
Activated carbon was prepared from olive stones by physical activation using water vapor at 750 °C. Textural, morphology and surface chemistry characterizations were achieved (nitrogen adsorption, SEM, FTIR and TPD–MS). NO2 adsorption was performed for different inlet gas compositions and temperatures. NO2 may adsorb directly on the oxygenated surface groups, and can also be reduced to NO. Therefore, a second NO2 molecule adsorbs on the oxygen left on the carbon surface. TPD performed after NO2 adsorption showed the presence of various surface groups. The adsorption capacity was about 131 mg/g, which is higher than with several activated carbon prepared from classical lignocellulosic biomass. NO2 reduction into NO decreased with increasing the inlet oxygen concentration. In contrast, a slight decrease in the NO2 adsorption capacity was observed with increasing temperature. It seems that the activated carbons prepared from olive stones by steam activation could be used as efficient adsorbents for NO2 removal.  相似文献   

20.
《Comptes Rendus Chimie》2014,17(12):1203-1211
A thiol-functionalized hierarchical zeolite nanocomposite was synthesized and investigated with a view to remove mercury from aqueous solutions. The hierarchical zeolite was prepared by the use of a beta zeolite and of cetyltrimethylammoniumbromide (CTAB). The ligand, 3-mercaptopropyltrimethoxysilane containing thiol (–SH) groups, was then immobilized on the surface of the hierarchical zeolite through grafting with surface silanol groups. FTIR, XRD, SEM, TG-DTG, and N2 adsorption–desorption techniques were used to characterize the nanocomposite before and after functionalization. Adsorption experiments showed that this adsorbent was an excellent one to bind mercury with high selectivity; an adsorption capacity of 8.2 mequiv·g−1 of adsorbent was obtained. Furthermore, the adsorbent retained most of its capacity after regeneration with nitric acid and thiourea solutions. The adsorption data was fitted to the Freundlich isotherm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号