首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical deposition of PbTe from 50 mM Pb(NO3)2 + 1 mM TeO2 + 0.1 M HNO3 solution onto n-Si(1 0 0) wafers was studied using cyclic voltammetry (CV), chronoamperometry, ex situ SEM, XRD and EDX. Electrochemical behavior of n-Si(1 0 0) electrode in electrolytes 50 mM Pb(NO3)2 + 0.1 M HNO3 and 1 mM TeO2 + 0.1 M HNO3 was also studied. No underpotential deposition (UPD) of Pb and Te onto n-Si was observed in the investigated systems indicating weak Pb–Si and Te–Si interactions. Deposition of Pb and Te on n-Si occurred with overvoltage via 3D island growth. Electrosynthesis of PbTe (NaCl-like structure, a = 0.650 nm) takes place due to codeposition of Pb and Te at potentials E > EPb2+/Pb0 (lead UPD onto tellurium). Cathodic deposition of PbTe onto n-Si(1 0 0) is irreversible – there is no anodic current in the CV curve. Oxidation of PbTe on n-Si is observed only under illumination, when photoelectrons and photoholes are generated in silicon substrate.  相似文献   

2.
LiCo1?xFexPO4/C composites with various amounts of Fe (x = 0, 0.05 and 0.1) were synthesized by vibrant type ball-milling coupled with microwave heating to investigate the role of doped Fe2+ in LiCo1?xFexPO4/C composites. The initial charge–discharge curves and cyclic voltammetry profiles of LiCo1?xFexPO4/C composites apparently featured an improved kinetic property compared to LiCoPO4. It was observed that the initial discharge capacity (120 mA hg?1) of LiCo0.95Fe0.05PO4 is higher than that (108 mA hg?1) of LiCoPO4 and the difference between the oxidation–reduction peaks is getting smaller with the increase of Fe doping. The electrochemical improvement in LiCo1?xFexPO4/C composites could be attributed to the enhanced Li+ diffusivity induced by the enlargement of 1D channel in polyanion structure of LiCoPO4.  相似文献   

3.
《Solid State Sciences》2007,9(8):693-698
Structures, thermal expansion properties and phase transitions of ErxFe2−x(MoO4)3 (0.0  x  2.0) have been investigated by X-ray diffraction and differential thermal analysis. The partial substitution of Er3+ for Fe3+ induces pronounced decreases in the phase transition temperature from monoclinic to orthorhombic structure. Rietveld analysis of the XRD data shows that both the monoclinic and orthorhombic Fe2(MoO4)3, as well as the orthorhombic ErxFe2−x(MoO4)3 (x  0.8) have positive thermal expansion coefficients. However, the linear thermal expansion coefficients of ErxFe2−x(MoO4)3 (x = 0.6–2.0) decrease with increasing content of Er3+ and for x  1.0, compounds ErxFe2−x(MoO4)3 show negative thermal expansion properties. Attempts for making zero thermal expansion coefficient materials result in that very low negative thermal expansion coefficient of −0.60 × 10−6/°C in Er1.0Fe1.0(MoO4)3 is observed in the temperature range of 180–400 °C, and zero thermal expansion is observed in Er0.8Fe1.2(MoO4)3 in the temperature range of 350–450 °C. In addition, anisotropic thermal expansions are found for all the orthorhombic ErxFe2−x(MoO4)3 compounds, with negative thermal expansion coefficients along the a axes.  相似文献   

4.
The La1?xSrxFe0.8Cr0.2O3?y (x = 0.2, 0.4, 0.6 and 0.8) phases were studied by X-ray photoelectron spectroscopy at room temperature and 57Fe Mössbauer spectroscopy at different temperatures. Mixed valence states were observed both for chromium and iron ions, justifying the complex magnetic behaviour exhibited by these compounds. The Mössbauer results indicate the simultaneous presence of Fe3+, Fe4+ and Fe5+ at 4.2 K and the co-existence of Fe3+ and Fe(3+n)+ at T = 293 K, with the latter fraction increasing with increasing strontium content. The presence of Cr3+/4+ is interpreted as being mainly responsible for the incomplete charge disproportionation reaction of iron at low temperature, as deduced from the Mössbauer results.  相似文献   

5.
The effects of doping the mixed-conducting (La,Sr)FeO3−δ system with Ce and Nb have been examined for the solid-solution series, La0.5−2xCexSr0.5+xFeO3−δ (x = 0–0.20) and La0.5−2ySr0.5+2yFe1−yNbyO3−δ (y = 0.05–0.10). Mössbauer spectroscopy at 4.1 and 297 K showed that Ce4+ and Nb5+ incorporation suppresses delocalization of p-type electronic charge carriers, whilst oxygen nonstoichiometry of the Ce-containing materials increases. Similar behavior was observed for La0.3Sr0.7Fe0.90Nb0.10O3−δ at 923–1223 K by coulometric titration and thermogravimetry. High-temperature transport properties were studied with Faradaic efficiency (FE), oxygen-permeation, thermopower and total-conductivity measurements in the oxygen partial pressure range 10−5–0.5 atm. The hole conductivity is lower for the Ce- and Nb-containing perovskites, primarily as a result of the lower Fe4+ concentration. Both dopants decrease oxide-ion conductivity but the effect of Nb-doping on ionic transport is moderate and ion-transference numbers are higher with respect to the Nb-free parent phase, 2.2 × 10−3 for La0.3Sr0.7Fe0.9Nb0.1O3−δ cf. 1.3 × 10−3 for La0.5Sr0.5FeO3−δ at 1223 K and atmospheric oxygen pressure. The average thermal expansion coefficients calculated from dilatometric data decrease on doping, varying in the range (19.0–21.2) × 10−6 K−1 at 780–1080 K.  相似文献   

6.
Mg/Fe spinel ferrite nanoparticles were prepared by aging Mg2+/Fe2+/Fe3+-LDH (layered double hydroxides) suspension at temperature below 100 °C. The yield of Mg/Fe spinel ferrite nanoparticles was dependent on the aging temperature and the molar ratio of ferrous ions in the LDH precursors. It was found that the majority of iron atoms was assembled into the lattice of spinel ferrite when the LDH precursors were aged at 95 °C for 18 h, and the formation of Mg/Fe spinel ferrite was favored with a higher molar ratio of ferrous ion in the LDH precursors. To the best knowledge of us, it is the first report on preparation of spinel ferrite under such a mild condition of below 100 °C from Mg2+/Fe2+/Fe3+-LDH microcrystallites.  相似文献   

7.
Isomorphously substituted (MeDM) and impregnated metal-containing MCM-41 (MeOx/IM) catalysts, in which Me = Co, Cu, Cr, Fe or Ni, have been prepared. Structural and textural characterizations of the catalysts were performed by means of X-ray diffraction (XRD), chemical analysis, Raman spectroscopy, electron paramagnetic resonance (EPR), N2 adsorption isotherms and temperature programmed reduction (TPR). Cu2+, Co2+, and Cr4+/Cr3+ species were found over the catalysts as cations incorporated in the MCM-41 structure (MeDM) or highly dispersed oxides on the surface (MeOx/IM). The MeDM catalysts exhibited a good performance in the dehydrogenation of ethylbenzene with CO2. However, MeOx/IM catalysts had a low performance in styrene production (activity less than 15 × 10?3 mmol h?1 and selectivity for styrene less than 80%) due to the high reducibility of the metals species. However, Ni2+ or Fe3+ coordinated with the MCM-41 framework, as well as NiOx and Fe2O3 extra-framework species, is continuously oxidized by the CO2 to maintain the active sites for dehydrogenating ethylbenzene. Deactivation studies on the FeDM sample showed that Fe3+ species produced active sp2 carbon compounds, which are removed by CO2; the referred sample is catalytically selective for styrene and stable over 24 h of reaction. In contrast, highly active Ni2+ and Ni0 species produced a large amount of polyaromatic carbonaceous deposits from styrene, as identified by TPO, TG and Raman spectroscopy. An acid–base mechanism is proposed to operate to adsorb ethylbenzene and abstract the β-hydrogen. CO2 plays a role in furnishing the lattice oxygen to maintain the Fe3+ active sites in the dehydrogenation of ethylbenzene to form styrene.  相似文献   

8.
Iron mixed-valence complex, (n-C3H7)4N[FeIIFeIII(dto)3] (dto = C2O2S2) shows a new-type of phase transition coupled with spin and charge around 120 K, where the charge transfer between the FeII and FeIII sites occurs reversibly, and shows the ferromagnetic transition at 7 K. To investigate the magnetic structure and its dimensionality of (n-C3H7)4N[FeIIFeIII(dto)3], we have synthesized a mixed crystal system, (n-C3H7)4N[FeII1?xZnIIxFeIII(dto)3], and measured its magnetic properties. In this system, the magnetic moment is reduced with increasing of Zn ratio. Moreover, the ferromagnetic interaction changes to the antiferromagnetic one and the remnant magnetization disappears between x = 0.48 and 0.96, while the charge transfer between the FeII and FeIII sites disappears above x = 0.26. In this paper, we present the magnetic dilution effect on the charge transfer phase transition and the ferromagnetic transition by means of magnetic susceptibility measurement and 57Fe Mössbauer spectroscopy.  相似文献   

9.
Orthorhombic distorted K2NiF4-type (Ca1+xNd1?x)CrO4 (0.00  x  0.15) was synthesized using a standard ceramic technique. The cell parameters (a and c) decreased, whereas the cell parameter (b) increased with the increase in x. The variation in the global instability index (GII) indicated that the crystal stability of (Ca1+xNd1?x)CrO4 was not influenced by the Cr4+ ion content. At all temperatures, the electrical conductivity (σ) of (Ca1+xNd1?x)CrO4 increased with the increase in x. (Ca1+xNd1?x)CrO4 was a p-type semiconductor and exhibited hopping conductivity in a small-polaron model in the temperature range of 290 K  T  713 K. The Cr4+ ion acts as an acceptor, and the electron transfer through the Cr3+–O–Cr4+ path becomes active as a result of the Cr4+ ion content and the Cr–O(1) distance.  相似文献   

10.
《Solid State Sciences》2012,14(7):782-788
First principles calculations have been performed to study the effects of the La3+ and Mn3+ substitutions in the multiferroic BiFeO3. The real compositions Bi1−xLaxFeO3 and BiFe1−xMnxO3 with x = 0.0, 0.1, 0.2, 0.3 were modeled by substitution of one, two and three Bi3+ or Fe3+ by La3+ or Mn3+ in the orthorhombic BiFeO3 structure, respectively. Density functional theory within the generalized gradient approximation with Hubbard correction of Dudarev (GGA + U) and plane wave pseudo-potential approach has been used to track the changes that occur in the structural parameters, electronic structure, magnetic, optical and polarization properties of the modified BiFeO3. The substitution of one Bi3+ with La3+ increases the band gap energy whereas the augmentation of La3+ substitutes decreases it. The substitutions of Fe3+ with Mn3+ do not change the band gap energy. The calculations predicted larger polarization of the modified BiFeO3, antiferromagnetism for Bi1−xLaxFeO3 and small ferrimagnetism for BiFe1−xMnxO3. Better multiferroic properties are expected for BiFe1−xMnxO3 materials (x = 0.1, 0.2) due to the increasing polarization and ferrimagnetic behavior. The optical properties were estimated by the calculated imaginary and real parts of the dielectric function. The increase of La3+ and Mn3+ substitutes lead to lower absorption intensity at energy range 2–7 eV.  相似文献   

11.
The Fe2(Sr2 ? xAx)FeO6.5 ? δ/2 systems have been investigated, by doping the iron rich 2201-type parent structure with Ba2+, La3+ and 5d10 post-transition cations. The syntheses have been carried out up to the limit of the 2201-type solid solutions, in order to test the role of the double iron layer Fe2O2.5 ? δ/2. The localisation of the charge carriers in these compounds is consistent with their strong antiferro-magnetism. The investigation was then carried out in the transition part of the diagram up to the formation of stable phases. The study of structural mechanisms was carried using high resolution electron microscopy (transmission and scanning transmission), electron diffraction and energy dispersive spectroscopy. Different non-stoichiometry mechanisms are observed, depending on the electronic structure and chemical properties of the doping elements. The specific behavior of the modulated double iron layer is discussed.  相似文献   

12.
We show a great possibility of mediated enzymatic bioelectrocatalysis in the formate oxidation and the carbon dioxide (CO2) reduction at high current densities and low overpotentials. Tungsten-containing formate dehydrogenase (FoDH1) from Methylobacterium extorquens AM1 was used as a catalyst and immobilized on a Ketjen Black-modified electrode. For the formate oxidation, a high limiting current density (jlim) of ca. 24 mA cm 2 was realized with a half wave potential (E1/2) of only 0.12 V more positive than the formal potential of the formate/CO2 couple (E°′CO2) at 30 °C in the presence of methyl viologen (MV2 +) as a mediator, and jlim reached ca. 145 mA cm 2 at 60 °C. Even when a viologen-functionalized polymer was co-immobilized with FoDH1 on the porous electrode, jlim of ca. 30 mA cm 2 was attained at 60 °C with E1/2 = E°′CO2 + 0.13 V. On the other hand, the CO2 reduction was also realized with jlim  15 mA cm 2 and E1/2 = E°′CO2  0.04 V at pH 6.6 and 60 °C in the presence of MV2 +.  相似文献   

13.
Polycrystalline ceramics of 1 ? x[Na0.5Bi0.5TiO3] ? x[BiFeO3] (NBT–BFO) were synthesized by the modified Pechini's method to study their magnetic and magnetoelectric properties. A series of solid solutions exhibiting magnetoelectric output were formed when two iso-structural compounds Na0.5Bi0.5TiO3 (NBT) and BiFeO3 (BFO) were combined. Polarization-electric field hysteresis loops revealed that the maximum polarization (~23 μC/cm2 for x = 0.1) decreased continuously with the increase of BFO content, following a hard doped effect. Piezoelectric charge coefficient (d33) = 41 pC/N was obtained for the ceramics with x = 0.1 and the value continues to decrease with the composition. Magnetic hysteresis loops represent the canted antiferromagnetic nature for x  0.6 and ferromagnetic-like behavior for the BFO-rich compositions. Magnetoelectric coupling was determined by measuring the magnetoelectric voltage coefficient which is ~12.4 mV/cm-Oe at an ac magnetic field of 10 Oe (1 kHz), for x = 0.1 sample.  相似文献   

14.
Ruthenium(0) composite hydrogenated amorphous carbon nitride (Ru/a-CNx:H) films were deposition on single crystal silicon (1 0 0) substrate by electrochemical deposition technique with acetonitrile as carbon source, and Ru3(CO)12 as dopant. In the deposited progress, the Si (1 0 0) acted as anode. The relative atomic ratio of Ru/N/C was about 0.28/0.33/1, and Ru nanocrystalline particles about 8 nm were homogeneously dispersed into the amorphous carbon matrix. After doping Ru into a-CNx:H films, the conductivity of the films were evidently improved and the resistivity drastically decrease from 108 Ω cm to about 100 Ω cm.  相似文献   

15.
The vibrational (infrared and Raman) spectroscopy is used in order to identify and characterize the following amphibole minerals with general formula W0–1X2Y5Z8O22(OH)2 (W = Na, K; X = Na, Ca; Y = Mg, Fe2+, Fe3+, Al; Z = Si, Al) originating from the localities in the Republic of Macedonia: glaucophane, Na2(Mg,Fe2+)3(Fe3+,Al)2Si8O22(OH)2; tremolite–actinolite, Ca2(Mg,Fe2+)5Si8O22(OH)2; hornblende (Na,K)0–1Ca2(Mg,Fe2+,Fe3+,Al)5(Si,Al)8 O22(OH)2 and arfvedsonite, NaNa2(Mg,Fe2+)4(Fe3+,Al)Si8O22(OH)2. The chemical composition of these minerals is not necessarily fixed. It is due to the possibility to form solid solution series with other minerals being their end-members (for example, tremolite–ferro-actinolite series, Ca2Mg5Si8O22(OH)2–Ca2Fe2+5Si8O22(OH)2). In this context, it is shown that the intensity and especially the number of the IR bands in the ν(OH) region could serve as a tool for exact mineral identification. Namely, it is based on the presence of different Y cations in various octahedral sites (M1 and M3), which is manifested by different spectral view. On the other hand, the expressed similarities in the 1300–370 cm−1 (IR) and 1200–100 cm−1 regions (Raman) of the spectra are observed due to their common structural characteristics (double chains of SiO4 tetrahedra). Thus, the bands in this region are tentatively prescribed mostly to the vibrations of the SiO4 tetrahedra. The results of our study are compared with the corresponding literature data for the analogous mineral species originating all over the world.  相似文献   

16.
The metallic ferromagnetic perovskite-type SrRuO3 (TC  160 K) belongs to the “class” of materials with strongly correlated electrons. Nonetheless a simple ferromagnetism associated with isotropic interactions of low spin Ru4+ ions local moments is far too simple to explain the complex interplay between charge carriers and magnetic interactions. In that sense the suppression of ferromagnetism in isoelectronic Sr1?xCaxRuO3 was tentatively associated to the increased lattice distortion influencing primarily the 4d Ru bandwidths and, hence, the itinerancy and respective populations of the spin-up and spin-down electrons.In order to probe the robustness of the metallic ferromagnetism against electron occupation of 4d Ru orbital we prepared and characterized polycrystalline Sr1?xNaxRuO3 (x = 0.0–0.19) ceramics. The substitution of Sr2+ by Na1+, leading to formally mixed valence Ru4+/Ru5+, induces the decrease of the Curie temperature and spin-wave stiffness, which was determined independently from magnetic and specific heat data. On the other hand the effective paramagnetic moment remains essentially unchanged. All compounds are metallic in a sense of electrical resistivity and thermopower temperature dependence; the low temperature upturn of the electrical resistivity was explained on a base of the weak localization. The metallic nature of the samples is corroborated by Pauli paramagnetism and high Sommerfeld coefficient γ, extracted from the low temperature specific heat, which increases from 30.9 mJ mol?1 K?2 (x = 0.0) to 43.0 mJ mol?1 K?2 (x = 0.19).  相似文献   

17.
Oxygen reduction reaction (ORR) activities were evaluated for clean Pt(111) and Ni/Pt(111) model catalysts fabricated by molecular beam epitaxy. Exposure of clean Pt(111) to 1.0 L CO at 303 K produced linear-bonded and bridge-bonded CO-Pt IR bands at 2093 and 1858 cm? 1. In contrast, 0.3-nm-thick Ni deposited on Pt(111) at 573 K (573 K-Ni0.3 nm/Pt(111)) produced broad IR bands for adsorbed CO at around 2070 cm? 1; the separation of reflection high-energy electron diffraction (RHEED) streaks is slightly wider for 573 K-Ni0.3 nm/Pt(111) than for the clean Pt(111). For 823 K-Ni0.3 nm/Pt(111), the separation of the RHEED streaks is the same as that for the Pt(111), and a single sharp IR band due to adsorbed CO is located at 2082 cm? 1. The results suggest that for the 823 K-Ni0.3 nm/Pt(111), a Pt-enriched outermost surface (Pt-skin) was formed through surface segregation of the substrate Pt atoms. ORR activities for the 573 K- and 823 K-Ni0.3 nm/Pt(111) as determined from linear sweep voltammetry curves were five times and eight times higher than that for clean Pt(111), respectively, demonstrating that Pt-skin generation is crucial for developing highly active electrode catalysts for fuel cells.  相似文献   

18.
Here we reported that UV light irradiation can significantly enhance sensitivity of Ti/TiO2 electrode for determination of trace heavy metal ions (such as Cu2 +, Pb2 + and Cd2 +) owing to the photodeposition of metal ions on the surface of electrodes. The sensitivity of heavy metal ions can be selectively enhanced over the Ti/TiO2 electrode, which is attributed to matching between potential of heavy metal ions and the position of the conduction band of TiO2.  相似文献   

19.
Transparent glasses, melt quenching derived, containing 10RO·20Bi2O3·(70 ? x)B2O3·xTiO2 [R = Ca, Sr] with x = 0, 0.5, 1.0 wt% were characterized by X-ray powder diffraction. Physical and spectroscopic properties viz., density, absorption, emission, electron paramagnetic resonance (EPR) and FTIR were investigated. The absorption band around 823 nm in pure glass samples is attributed to the electronic transition of 3P0 to 3P2 of Bi+ radicals. A small absorption hump centered around 609 nm is found in all doped glasses due to 2T2g to 2Eg transition of octahedral Ti3+ ions. The emission results revealed that all the samples exhibit a broad emission band covering entire visible-light range, with λex = 360 nm, centered 470–520 nm corresponds to electronic transition of 3P1 to 1S0 of Bi3+ ions, therefore the present materials can be potentially used as tunable or full-color display systems. And a strong emission around 706 nm with λex = 514 nm due to transition of 2P3/2 to 2P1/2 of Bi2+ ions. In SrO mixed glasses Ti4+ ions effect the environment of Bi3+ ion symmetry units from C2 to C3i. A small EPR signal (at room temperature) is observed in titanium doped glasses due to Ti3+ ions. In both the series with increase of TiO2 concentration BO4 units are gradually converted into BO3 units and new cross linkages are formed, like B–O–Ti, Bi–O–Ti at the expense of B–O–B bonds.  相似文献   

20.
We propose a new way to develop high-performance cathodes for IT-SOFCs by utilizing the interfacial reactions. SrCoOx was selected as the starting electrode material, which took a vacancy-ordered 2H BaNiO3-type structure and showed negligible ionic conductivity and low electrical conductivity. Phase reactions between SrCoOx and Sm0.2Ce0.8O1.9 happened at 900 °C or higher, resulting in the incorporation of Sm and Ce into its lattice structure. This promoted the phase transition to a cubic perovskite and led to substantial increase in the electrical conductivity and oxygen mobility of the electrode. By utilizing such phase reactions, the SrCoOx + Sm0.2Ce0.8O1.9 composite was developed into a high performance electrode with a low area specific resistance of 0.08 Ω cm?2 at 650 °C. An anode-supported cell with such electrode delivered a peak power density of 795 mW cm?2 at 600 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号