首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The dynamic properties of the multichannel hydrogen abstraction reactions of CH(3)CH(2)Br + OH --> products and CH(3)CHBr(2) + OH --> products are studied by dual-level direct dynamics method. For each reaction, three reaction channels, one for alpha-hydrogen abstraction and two for beta-hydrogen abstractions, have been identified. The minimum energy paths (MEPs) of both the reactions are calculated at the Becke's half-and-half (BH&H)-Lee-Yang-Parr (LYP)/6-311G(d, p) level and the energy profiles along the MEPs are further refined with interpolated single-point energies (ISPE) method at the G2M(RCC5)//BH&H-LYP level. There are complexes with energies less than those of the reactants or products located at the entrance or exit channels, which indicates that the reactions may proceed via an indirect mechanism. By canonical variational transition-state theory (CVT) the rate constants are calculated incorporating the small-curvature tunneling (SCT) correction in the temperature range of 220-2000 K. The agreement of the rate constants with available experimental values for two reactions is good in the measured temperature range. The calculated results show that alpha-hydrogen abstraction channel is the major reaction pathway in the lower temperature for two reactions, while the contribution of beta-hydrogen abstraction will increase with the increase in temperature.  相似文献   

2.
用G3(MP2)//B3PW91/6-311G(d,p)双级别方法研究了CH_3自由基与C_2H5_CN的反应机理和动力学性质.计算表明反应存在抽氢、加成-消除和取代3种机理7条反应通道.用CVT方法计算了所有反应通道在1 000K~3 000K温度范围内的速率常数,结果表明计算值与实验值符合得很好.  相似文献   

3.
采用双水平直接动力学方法对C2H3与CH3F氢抽提反应进行了研究. 在QCISD(T)/6-311++G(d, p)//B3LYP/6-311G(d, p)水平上, 计算的三个反应通道R1、R2和R3的能垒(ΔE)分别为43.2、43.9和44.1 kJ·mol-1, 反应热为-38.2 kJ·mol-1. 此外, 利用传统过渡态理论(TST)、正则变分过渡态理论(CVT)和包含小曲率隧道效应(SCT)的CVT, 分别计算了200-3000 K温度范围内反应的速率常数kTST、kCVT和kCVT/SCT. 结果表明: (1) 三个氢抽提反应通道的速率常数随温度的增加而增大, 其中变分效应的影响可以忽略, 隧道效应则在低温段影响显著; (2) R1反应是主反应通道, 但随着温度的升高, R2反应的竞争力增大, 而R3反应对总速率常数的影响很小.  相似文献   

4.
The multiple channel reaction H + CH(3)CH(2)Cl --> products has been studied by the ab initio direct dynamics method. The potential energy surface information is calculated at the MP2/6-311G(d,p) level of theory. The energies along the minimum energy path are further improved by single-point energy calculations at the PMP4(SDTQ)/6-311+G(3df,2p) level of theory. For the reaction, four reaction channels (one chlorine abstraction, one alpha-hydrogen abstraction, and two beta-hydrogen abstractions) have been identified. The rate constants for each reaction channel are calculated by using canonical variational transition state theory incorporating the small-curvature tunneling correction in the temperature range 298-5000 K. The total rate constants, which are calculated from the sum of the individual rate constants, are in good agreement with the experimental data. The calculated temperature dependence of the branching fractions indicates that for the title reaction, H-abstraction reaction is the major reaction channel in the whole temperature range 298-5000 K.  相似文献   

5.
用QC ISD(T)/6-311 G(3DF,3PD)/MP2/6-311G(D,P)方法研究了H原子与CH3NH2的抽氢反应过程。该反应包含两个反应通道:H分别从CH3基团(R1)和NH2(R2)基团上抽氢。R1势垒比R2势垒低3.42kJ/mol,表明R1是主反应通道。在从头算的基础上,用变分过渡态理论(CVT)加小曲率隧道效应(SCT)研究了各反应温度范围为200~4000K内的速率常数,所得结果与实验值符合的很好。动力计算表明,在所研究的温度范围内,变分效应对速率常数的计算影响不大,而在低温范围内,隧道效应起了很重要的作用。  相似文献   

6.
The reaction of H atom with (CH3)3GeH is considered to play important role in chemical vapor deposition (CVD) processes used in the semiconductor industry 1-2. The reaction mechanism and kinetics nature for this reaction are therefore essential input data for computer-modelling studies directed towards obtaining an understanding of the factors controlling CVD processes. However, despite its importance, the kinetics work about this reaction was very limited. Only two groups studied exper…  相似文献   

7.
Theoretical investigations are carried out on the multiple-channel reactions, CH(3) + SiH(CH(3))(3) → products and CF(3) + SiH(CH(3))(3) → products. The minimum energy paths (MEP) are calculated at the MP2/6-311 + G(d,p) level, and energetic information is further refined by the MC-QCISD (single point) method. The rate constants for major reaction channels are calculated by the canonical variational transition state theory (CVT) with small-curvature tunneling (SCT) correction over the temperature range 200-1500 K. The theoretical rate constants are in good agreement with the available experimental data and are found to be k(1a)(T) = 1.93 × 10(-24) T(3.15) exp(-1214.59/T) and k(2a)(T) = 1.33 × 10(-25) T(4.13) exp(-397.94/T) (in unit of cm(3) molecule(-1) s(-1)). Our calculations indicate that hydrogen abstraction channel from SiH group is the major channel due to the smaller barrier height among five channels considered.  相似文献   

8.
The mechanisms of the reactions: CH(3)C(O)CH(2)F+OH/Cl-->products (R1/R2) and CH(3)C(O)CF(3)+OH/Cl-->products (R3/R4) are studied over a wide temperature range (200-2000 K) by means of the dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/cc-pVDZ and B3LYP/6-311G(d,p) levels. The energy profiles of the reactions are then refined with the interpolated single-point-energy method (ISPE) at the BMC-CCSD level. The canonical variational transition-state theory (CVT) with the small-curvature-tunneling (SCT) correction method is used to calculate the rate constants. Using group-balanced isodesmic reactions as working chemical reactions, the standard enthalpies of formation for CH(3)C(O)CH(2)F, CH(3)C(O)CF(3), CH(3)C(O)CHF, CH(2)C(O)CH(2)F, and CH(2)C(O)CF(3) are evaluated at the CCSD(T)/6-311+G(2d,p)//MP2/cc-pVDZ level of theory. The results indicate that the hydrogen abstraction is dominated by removal from the fluoromethyl position rather than from the methyl position.  相似文献   

9.
The hydrogen abstraction reactions of Cl atom with a series of fluorinated alcohols, i.e., CH(3-n)F(n)CH(2)OH + Cl (n = 1-3) (R1-R3) have been studied systematically by ab initio direct dynamics method and the canonical variational transition state theory (CVT). The potential energy surface information is calculated at the MP2/6-311G(d,p) level. Energies along the minimum energy paths are improved by a series of single-point calculations at the higher modified GAUSSIAN-2 (G2M) level of theory. Theoretical analysis shows that three kinds of hydrogen atoms can be abstracted from the reactants CH(2)FCH(2)OH and CHF(2)CH(2)OH, and for CF(3)CH(2)OH, two possible pathways are found. The rate constants for each reaction channel are evaluated by CVT with the small-curvature tunneling correction (SCT) over a wide range of temperature from 200 to 2000 K. The calculated CVT/SCT rate constants are in good agreement with the available experimental values for the reactions CHF(2)CH(2)OH + Cl and CF(3)CH(2)OH + Cl. However, for the reaction CH(2)FCH(2)OH + Cl, there is negative temperature dependence below 500 K, which is different from the experimental fitted. It is shown that in the low temperature ranges, the three reactions all proceed predominantly via H-abstraction from the methylene positions, and with the increase of the temperature the H-abstraction channels from the fluorinated-methyl positions should be taken into account, while the H-abstraction channels from the hydroxyl groups are negligible over the whole temperature ranges. Also, the reactivity decreases substantially with fluorine substitution at the methyl position of alcohol.  相似文献   

10.
The multiple-channel reactions Br + CH(3)SCH(3) --> products are investigated by direct dynamics method. The optimized geometries, frequencies, and minimum energy path are all obtained at the MP2/6-31+G(d,p) level, and energetic information is further refined by the G3(MP2) (single-point) theory. The rate constants for every reaction channels, Br + CH(3)SCH(3) --> CH(3)SCH(2) + HBr (R1), Br + CH(3)SCH(3) --> CH(3)SBr + CH(3) (R2), and Br + CH(3)SCH(3) -->CH(3)S + CH(3)Br (R3), are calculated by canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200-3000 K. The total rate constants are in good agreement with the available experimental data, and the two-parameter expression k(T) = 2.68 x 10(-12) exp(-1235.24/T) cm(3)/(molecule s) over the temperature range 200-3000 K is given. Our calculations indicate that hydrogen abstraction channel is the major channel due to the smallest barrier height among three channels considered, and the other two channels to yield CH(3)SBr + CH(3) and CH(3)S + CH(3)Br are minor channels over the whole temperature range.  相似文献   

11.
The hydrogen abstraction reactions of CH3CHFCH3 and CH3CH2CH2F with the OH radicals have been studied theoretically by a dual-level direct dynamics method. The geometries and frequencies of all the stationary points are optimized by means of the DFT calculation. There are complexes at the reactant side or exit route, indicating these reactions may proceed via indirect mechanisms. To improve the reaction enthalpy and potential barrier of each reaction channel, the single point energy calculation is performed by the MC-QCISD/3 method. The rate constants are evaluated by canonical variational transition state theory (CVT) with the small-curvature tunneling correction method (SCT) over a wide temperature range 200-2000 K. The canculated CVT/SCT rate constants are consistent with available experimental data. The results show that both the variation effect and the SCT contribution play an important role in the calculation of the rate constants. For reactions CH3CHFCH3 and CH3CH2CH2F with OH radicals, the channels of H-abstraction from -CHF- and -CH2- groups are the major reaction channels, respectively, at lower temperature. Furthermore, to further reveal the thermodynamics properties, the enthalpies of formation of reactants CH3CHFCH3, CH3CH2CH2F, and the product radicals CH3CFCH3, CH3CHFCH2, CH3CH2CHF, CH3CHCH2F, and CH2CH2CH2F are studied using isodesmic reactions.  相似文献   

12.
Direct dynamics study on the reaction of acetaldehyde with ozone   总被引:1,自引:0,他引:1  
The hydrogen abstraction reaction of ozone with acetaldehyde has been studied theoretically over the temperature range 250-2500 K. Two different reactive sites of acetaldehyde molecule, CH(3) and CHO groups have been investigated, and results confirm that the CHO group is a highly reactive site. In this study, the geometries and harmonic vibrational frequencies of all stationary points are calculated at the MPW1K, BHandHLYP, and MPWB1K levels of theory. The minimum energy paths (MEPs) were obtained at the MPW1K/6-31+G(d,p) level of theory. To refine the energies along the MEPs of each channel, single-point energy calculations were performed by a higher-level energy calculation method (denoted as HL). The rate constants were evaluated based on the MEPs from the HL method in the temperature range 250-2500 K by using the conventional transition state theory (TST), the canonical variational transition state theory (CVT), the microcanonical variational transition state theory (muVT), the CVT coupled with small-curvature tunneling (SCT) correction (CVT/SCT), and the muVT coupled with Eckart tunneling correction (muVT/Eckart). The fitted three-parameter Arrhenius expressions of the calculated CVT/SCT and muVT/Eckart rate constants of the H abstraction from CHO group are k CVT/SCT(T) = 4.92 x 10(-27).T 3.77.e(-7867.0/T) and k muVT/Eckart(T) = 2.10 x 10(-27).T(3.90).e(-7706.2/T), respectively. The fitted three-parameter Arrhenius expressions of the calculated CVT/SCT and muVT/Eckart rate constants of the H abstraction from CH3 group are k(CVT/SCT)(T) = 1.27 x 10(-27).T(3.94).e(-14554.1/T) and k muVT/Eckart(T) = 1.62 x 10(-26).T(3.66).e(-15459.8/T), respectively.  相似文献   

13.
The hydrogen abstraction reaction of O(^3P) with Si2H6 has been studied theoretially. Two transition states of ^3A″ and ^3A′ symmetries have been located for this abstraction reaction. Geometries have been optimized at the UMP2 leve with 6-311G (d) basis set. G3MP2 has been used for the final single-point energy calculation. The rate constants have been calculated over a wide temperature range of 200-3000K using canonical variational transition-state sheory (CVT) with small curvature tunneling effect(SCT). The calculated CVT/SCT rate constants match well with the experimental value.  相似文献   

14.
The E(CO)2 elimination reactions of alkyl hydroperoxides proceed via abstraction of an alpha-hydrogen by a base: X(-) + R(1)R(2)HCOOH --> HX + R(1)R(2)C=O + HO(-). Efficiencies and product distributions for the reactions of the hydroxide anion with methyl, ethyl, and tert-butyl hydroperoxides are studied in the gas phase. On the basis of experiments using three isotopic analogues, HO(-) + CH3OOH, HO(-) + CD3OOH, and H(18)O(-) + CH3OOH, the overall intrinsic reaction efficiency is determined to be 80% or greater. The E(CO)2 decomposition is facile for these methylperoxide reactions, and predominates over competing proton transfer at the hydroperoxide moiety. The CH3CH2OOH reaction displays a similar E(CO)2 reactivity, whereas proton transfer and the formation of HOO(-) are the exclusive pathways observed for (CH3)3COOH, which has no alpha-hydrogen. All results are consistent with the E(CO)2 mechanism, transition state structure, and reaction energy diagrams calculated using the hybrid density functional B3LYP approach. Isotope labeling for HO(-) + CH3OOH also reveals some interaction between H2O and HO(-) within the E(CO)2 product complex [H2O...CH2=O...HO(-)]. There is little evidence, however, for the formation of the most exothermic products H2O + CH2(OH)O(-), which would arise from nucleophilic condensation of CH2=O and HO(-). The results suggest that the product dynamics are not totally statistical but are rather direct after the E(CO)2 transition state. The larger HO(-) + CH3CH2OOH system displays more statistical behavior during complex dissociation.  相似文献   

15.
Kinetics of the hydrogen abstraction reaction (*)CH(3) + CH(4) --> CH(4) + (*)CH(3) is studied by a direct dynamics method. Thermal rate constants in the temperature range of 300-2500 K are evaluated by the canonical variational transition state theory (CVT) incorporating corrections from tunneling using the multidimensional semiclassical small-curvature tunneling (SCT) method and from the hindered rotations. These results are used in conjunction with the Reaction Class Transition State Theory/Linear Energy Relationship (RC-TST/LER) to predict thermal rate constants of any reaction in the hydrogen abstraction class of (*)CH(3) + alkanes. Our analyses indicate that less than 40% systematic errors on the average exist in the predicted rate constants using the RC-TST/LER method while comparing to explicit rate calculations the differences are less than 100% or a factor of 2 on the average.  相似文献   

16.
A direct ab initio dynamics method is used to investigate the hydrogen‐abstraction reaction CH3CHF2+Cl. One transition state is located for α‐H abstraction, and two are identified for β‐H abstraction. The potential‐energy surface (PES) is obtained at the G3(MP2)//MP2/6‐311G(d, p) level. Furthermore, the rate constants of the three channels are evaluated by using canonical variational transition‐state theory (CVT) with small‐curvature tunneling (SCT) contributions over a wide temperature range of 200–2500 K. The dynamic calculations show that the reaction proceeds mainly by α‐H abstraction over the whole temperature range. The calculated rate constants and branching ratios are both in good agreement with the available experimental values.  相似文献   

17.
We present a direct ab initio dynamics study on the hydrogen abstraction reaction CH2O + HO2 --> CHO + H2O2, which is predicted to have four possible reaction channels caused by different attacking orientations of HO2 radical to CH2O. The structures and frequencies at the stationary points and the points along the minimum energy paths (MEPs) of the four reaction channels are calculated at the B3LYP/cc-pVTZ level of theory. Energetic information of stationary points and the points along the MEPs is further refined by means of some single-point multilevel energy calculations (HL). The rate constants of these channels are calculated using the improved canonical variational transition-state theory with the small-curvature tunneling correction (ICVT/SCT) method. The calculated results show that, in the whole temperature range, the more favorable reaction channels are Channels 1 and 3. The total ICVT/SCT rate constants of the four channels at the HL//B3LYP/cc-pVTZ level of theory are in good agreement with the available experiment data over the measured temperature ranges, and the corresponding three-parameter expression is k(ICVT/SCT) = 3.13 x 10(-20) T(2.70) exp(-11.52/RT) cm3 mole(-1) s(-1) in the temperature range of 250-3000 K. Additionally, the flexibility of the dihedral angle of H2O2 is also discussed to explain the different experimental values.  相似文献   

18.
The mechanisms of the reactions: CH(3)CFCl(2) + Cl (R1) and CH(3)CF(2)Cl + Cl (R2) are studied over a wide temperature range (200-3000 K) using the dual-level direct dynamics method. The minimum energy path calculation is carried out at the MP2/6-311G(d,p) and B3LYP/6-311G(d,p) levels, and energetic information is further refined by the G3(MP2) theory. The H-abstraction from the out-of-plane for (R1) is the major reaction channel, while the in-plane H-abstraction is the predominant route of (R2). The canonical variational transition-state theory (CVT) with the small-curvature tunneling (SCT) correction method is used to calculate the rate constants. Using group-balanced isodesmic reactions and hydrogenation reactions as working chemical reactions, the standard enthalpies of formation for CH(3)CFCl(2), CH(3)CF(2)Cl, CH(2)CFCl(2), and CH(2)CF(2)Cl are evaluated at the CCSD(T)/6-311 + G(3df,2p)//MP2/6-311G(d,p) level of theory. The results indicate that the substitution of fluorine atom for the chlorine atom leads to a decrease in the C-H bond reactivity with a small increase in reaction enthalpies. Also, for all reaction pathways the variational effect is small and the SCT effect is only important in the lower temperature range on the rate constants.  相似文献   

19.
The multiple-channel reactions OH + CH3NHC(O)OCH3 --> products are investigated by direct dynamics method. The optimized geometries, frequencies, and minimum energy path are all obtained at the MP2/6-311+G(d,p) level, and energetic information is further refined by the BMC-CCSD (single-point) method. The rate constants for every reaction channels, R1, R2, R3, and R4, are calculated by canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200-1000 K. The total rate constants are in good agreement with the available experimental data and the two-parameter expression k(T) = 3.95 x 10(-12) exp(15.41/T) cm3 molecule(-1) s(-1) over the temperature range 200-1000 K is given. Our calculations indicate that hydrogen abstraction channels R1 and R2 are the major channels due to the smaller barrier height among four channels considered, and the other two channels to yield CH3NC(O)OCH3 + H2O and CH3NHC(O)(OH)OCH3 + H2O are minor channels over the whole temperature range.  相似文献   

20.
The reaction of C2(A3Πu) with CH4 has been investigated over a wide temperature range 200–3,000 K by direct ab initio dynamics method at the BMC‐CCSD//BB1K/6‐311+G(2d,2p) level of theory. The optimized geometries and frequencies of the stationary points are calculated at the BB1K/6‐311+G(2d,2p) level, and then the energy profiles of the reactions are refined using the BMC‐CCSD method. The activation barrier height for H‐abstraction reaction was calculated to be 4.44 kcal/mol in temperature range (337–605 K), and the electron transfer behavior was also analyzed by quasi‐restricted molecular orbital method in detail. The canonical variational transition‐state theory (CVT) with the small curvature tunneling (SCT) correction method is used to calculate the rate constants over a wide temperature range 200–3,000 K. The theoretical results shows that variational effect is to some extent large in lower temperature range, and small curvature and tunneling effect play important roles to the H‐atom abstraction only at lower temperatures. The CVT/SCT rate constants are in good agreement with the available experimental results. Our theoretical study is expected to provide a direct insight into the reaction mechanism and may be useful for estimating the kinetics of the title reaction over a wide temperature range where no experimental data are available so far. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号