首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feng-Bo Yang 《Talanta》2009,78(3):1155-203
In this work, a simple and low-cost miniaturized light-emitting diode induced fluorescence (LED-IF) detector based on an orthogonal optical arrangement for capillary electrophoresis (CE) was developed, using a blue concave light-emitting diode (LED) as excitation source and a photodiode as photodetector. A lens obtained from a waste DVD-ROM was used to focus the LED light beam into an ∼80 μm spot. Fluorescence was collected with an ocular obtained from a pen microscope at 45° angle, and passed through a band-pass filter to a photodiode detector. The performance of the LED-IF detector was demonstrated in CE separations using sodium fluorescein and fluorescein isothiocyanate (FITC)-labeled amino acids as model samples. The limit of detection for sodium fluorescein was 0.92 μM with a signal-to-noise ratio (S/N) of 3. The total cost of the LED-IF detector was less than $ 50.  相似文献   

2.
Zhao S  Yuan H  Xiao D 《Electrophoresis》2006,27(2):461-467
A highly sensitive optical fiber light-emitting diode (LED)-induced fluorescence detector for CE has been constructed and evaluated. In this detector, a violet or blue LED was used as the excitation source and an optical fiber with 40 microm OD was used to transmit the excitation light. The upper end of the fiber was inserted into the separation capillary and was situated right at the detection window. Fluorescence emission was collected by a 40 x microscope objective, focused on a spatial filter, and passed through a cutoff filter before reaching the photomultiplier tube. Output signals were recorded and processed with a computer using in-house written software. The present CE/fluorescence detector deploys a simple and inexpensive optical system that requires only an LED as the light source. Its utility was successfully demonstrated by the separation and determination of amino acids (AAs) labeled with naphthalene-2,3-dicarboxaldehyde (NDA) and FITC. Low detection limits were obtained ranging from 17 to 23 nM for NDA-tagged AAs and 8 to 12 nM for FITC-labeled AAs (S/N=3). By virtue of such valuable features as low cost, convenience, and miniaturization, the presented detection scheme was proven to be attractive for sensitive fluorescence detection in CE.  相似文献   

3.
Zhang T  Fang Q  Wang SL  Qin LF  Wang P  Wu ZY  Fang ZL 《Talanta》2005,68(1):19-24
The signal-to-noise level of light emitting diode (LED) fluorimetry using a liquid-core-waveguide (LCW)-based microfluidic capillary electrophoresis system was significantly enhanced using a synchronized dual wavelength modulation (SDWM) approach. A blue LED was used as excitation source and a red LED as reference source for background-noise compensation in a microfluidic capillary electrophoresis (CE) system. A Teflon AF-coated silica capillary served as both the separation channel and LCW for light transfer, and blue and red LEDs were used as excitation and reference sources, respectively, both radially illuminating the detection point of the separation channel. The two LEDs were synchronously modulated at the same frequency, but with 180°-phase shift, alternatingly driven by a same constant current source. The LCW transferred the fluorescence emission, as well as the excitation and reference lights that strayed through the optical system to a photomultiplier tube; a lock-in amplifier demodulated the combined signal, significantly reducing its noise level. To test the system, fluorescein isothiocyanate (FITC)-labeled amino acids were separated by capillary electrophoresis and detected by SDWM and single wavelength modulation, respectively. Five-fold improvement in S/N ratio was achieved by dual wavelength modulation, compared with single wavelength modulation; and over 100-fold improvement in S/N ratio was achieved compared with a similar LCW-CE system reported previously using non-modulated LED excitation. A detection limit (S/N = 3) of 10 nM FITC-labeled arginine was obtained in this work. The effects of modulation frequency on S/N level and on the rejection of noise caused by LED-driver current and detector were also studied.  相似文献   

4.
Guillo C  Roper MG 《Electrophoresis》2008,29(2):410-416
A multianalyte CE competitive immunoassay using two-color detection was developed to measure insulin and glucagon in islets of Langerhans. Insulin was quantified with FITC-insulin (Ins*) and anti-insulin antibodies (Ins Ab) and glucagon was quantified with Cy5-glucagon (Glu*) and anti-glucagon antibodies (Glu Ab). A 3 mW Ar(+) laser at 488 nm and a 25 mW laser diode at 635 nm were used to excite FITC and Cy5, respectively. Fluorescence was split with a half-silvered mirror and passed through a 520 +/- 20 nm bandpass filter or a 663 nm longpass filter for the detection of insulin and glucagon, respectively. The two-color detection format enabled independent quantitation of both analytes even with concentrations of insulin immunoassay reagents 20-fold higher than glucagon reagents. Simultaneous calibration curves were generated and used to determine insulin and glucagon content in islets of Langerhans. Amounts of insulin and glucagon were 56.6 +/- 3.2 and 1.0 +/- 0.5 ng/islet, respectively. LODs were 7 nM insulin and 3 nM glucagon. The assay will be applicable to fast monitoring of multiple peptides secreted from islets of Langerhans and can be applied to other systems for the quantitation of multiple analytes with large differences in concentrations.  相似文献   

5.
毛细管电泳-荧光/非接触电导组合型检测器的研制   总被引:3,自引:0,他引:3  
杨丙成  谭峰  关亚风 《分析化学》2005,33(5):740-742
报道了一种毛细管电泳-荧光/非接触电导组合型检测器。该检测器共用非接触电导检测池,实现了双检测器响应同步。优化了非接触电导检测系统中激发电压信号及其频率;荧光检测是用发光二极管作为激发光源,用光纤收集并传输荧光信号至光电倍增管。用无机金属离子和异硫氰酸荧光素评价该体系,结果表明,该检测器达到了任一单类型检测器性能指标。  相似文献   

6.
We report a high-sensitivity, disposable lab-on-a-chip with a thin-film organic light-emitting diode (OLED) excitation source and an organic photodiode (OPD) detector for on-chip fluorescence analysis. A NPB/Alq3 thin-film green OLED with an active area of 0.1 cm(2) was used as the excitation source, while a CuPC/C(60) thin-film OPD with 0.6 cm(2) active area was used as a photodetector. A novel cost-effective, cross-polarization scheme was used to filter out excitation light from a fluorescent dye emission spectrum. The excitation light from the OLED was linearly polarized and used to illuminate a microfluidic device containing a 1 microL volume of dye dissolved in ethanol. The detector was shielded by a second polarizer, oriented orthogonally to the excitation light, thus reducing the photocurrent due to excitation light leakage on the detector by approximately 25 dB. The fluorescence emission light, which is randomly polarized, is only attenuated by approximately 3 dB. Fluorescence signals from Rhodamine 6G (peak emission wavelength of 570 nm) and fluorescein (peak emission wavelength of 494 nm) dyes were measured in a dilution series in the microfluidic device with emission signals detected by the OPD. A limit-of-detection of 100 nM was demonstrated for Rhodamine 6G, and 10 microM for fluorescein. This suggests that an integrated microfluidic device, with an organic photodiode and LED excitation source and integrated polarizers, can be fabricated to realize a compact and economical lab-on-a-chip for point-of-care fluorescence assays.  相似文献   

7.
Xu J  Chen S  Xiong Y  Yang B  Guan Y 《Talanta》2008,75(4):885-889
A glycerol assisted light-emitting diode (LED)-induced fluorescence detector (IF) for capillary flow systems was constructed and evaluated. A blue LED was used as the excitation source, and optical fibers (OF) were used to transmit the excitation light and collect the fluorescence. A commercial available 5-port manifold was used as detection cell, where the capillary tube and the OF were fixed into the manifold. The precision of the holes on the manifold ensured a self-alignment of optical path. A refractive index matching fluid (RIMF)-glycerol was used to eliminate the interfaces between the OF and the LED, as well as between the fused silica capillary and the transmitting/collecting fiber. The enhancement of excitation light led to 2.8-folds improvement on the signal-to-noise ratio. The use of RIMF also eliminates focusing effect of the capillary wall and reduces both the excitation light directed to the detection cell and background signal, resulting in reduction in the fluorescence intensity and noise level. The intensity was reduced to 47-63% for laser and 60-77% for LED, respectively, for capillaries with i.d. from 50 to 250 microm; while the noise level was reduced to 1/3 when RIMF was used for both laser and LED on the tested capillaries. About 5.6-fold enhancement in signal-to-noise ratio was obtained in total. The detection limit of the LED-IF for fluorescein isothiocyanate (FITC) was 4 nM. Application of the LED-IF for the analysis of FITC-labeled amino acids by electrophoresis was demonstrated.  相似文献   

8.
Li HF  Lin JM  Su RG  Uchiyama K  Hobo T 《Electrophoresis》2004,25(12):1907-1915
A simple and easy-to-use integrated laser-induced fluorescence detector for microchip electrophoresis was constructed and evaluated. The fluid channels and optical fiber channels in the glass microchip were fabricated using standard photolithographic techniques and wet chemical etching. A 473 nm diode-pumped laser was used as the excitation source, and the collimation and collection optics and mirrors were discarded by using a multimode optical fiber to couple the excitation light straight into the microchannel and placing the microchip directly on the top of the photomultiplier tube. A combination of filter systems was incorporated into a poly(dimethylsiloxane) layer, which was reversibly sealed to the bottom of the microchip to eliminate the scattering excitation light reaching to the photomultiplier tube. Fluorescein/calcein samples were taken as model analytes to evaluate the performance with respect to design factors. The detection limits were 0.05 microM for fluorescein and 0.18 microM for calcein, respectively. The suitability of this simple detector for fluorescence detection was demonstrated by baseline separation of fluorescein isothiocyanate (FITC)-labeled arginine, phenylalanine, and glycine and FITC within 30 s at separation length of 3.8 cm and electrical field strength of 600 V/cm.  相似文献   

9.
In this work, a sub-minute and sensitive capillary electrophoresis with laser-induced fluorescence (CE-LIF) method was developed for the analysis and quantitation of the neurotransmitter 5-hydroxytryptamine (5-HT) or serotonin in urine. The method involves precolumn derivatization with fluorescein isothiocyanate isomer I (FITC) using an excitation light from an argon ion laser of 488 nm and a 520 nm band pass emission filter. Different variables that affect derivatization (pH, FITC concentration, reaction time and temperature) and separation (buffer concentration, pH, applied voltage and injection time) were studied. The linear dynamic range obtained was between 0 and 188 nM with a detection limit of 16 nm with a RSD between 2 and 9%. The applicability of the proposed method was demonstrated by analysis of 5-HT in human urine, establishing a concentration of 57 nM in control urine. The method was validated by standard-addition methodology.  相似文献   

10.
A combined detection system of simultaneous contactless conductometric and fluorescent detection for capillary electrophoresis (CE) has been designed and evaluated. The two processes share a common detection cell. A blue light-emitting diode (LED) was used as the excitation source and an optical fiber was used to collect the emitting fluorescence for fluorescent detection (FD). Inorganic ions, fluorescein isothiocyanate (FITC)-labeled amino acids and small molecule peptides were separated and detected by the combined detector, and the detection limits (LODs) of sub-microM level were achieved.  相似文献   

11.
Yang F  Li XC  Zhang W  Pan JB  Chen ZG 《Talanta》2011,84(4):1155-1106
In this paper, a compact and inexpensive light emitting diode induced fluorescence (LED-IF) detector with simplified optical configuration was developed and assembled in an integrated microfluidic device for microscale electrophoresis. The facile detector mainly consisted of an LED, a focusing pinhole, an emission filter and a photodiode, and was encapsulated in the upper layer of an aluminum alloy device with two layers. At the bottom layer, integrated circuit (IC) was assembled to manipulate the voltage for sample injection and separation, LED emission and signal amplifying. A high-power LED with fan-shaped heat sink was used as excitation source. The excitation light was focused by a 1.1 mm diameter pinhole fabricated in a thin piece of silver foil, and the obtained sensitivity was about 3 times as high as that using electrode plate. Other important parameters including LED driven current, fluorescence collection angle and detection distance have also been investigated. Under optimal conditions, considerable high-response of 0.09 fmol and 0.18 fmol mass detection limits at 0.37 nL injection volume for sodium fluorescein (SF) and FITC was achieved, respectively. This device has been successfully employed to separate penicillamine (PA) enantiomers. Due to such significant features as low-cost, integration, miniaturization, and ease of commercialization, the presented microfluidic device may hold great promise for clinical diagnostics and bioanalytical applications.  相似文献   

12.
Xu J  Xiong Y  Chen S  Guan Y 《Talanta》2008,76(2):369-372
A light-emitting diode-induced fluorescence detector (LED-FD) for capillary electrophoresis was constructed and evaluated. A lamp LED with an enhanced emission spectrum and a band pass filter was used as the excitation light source. Refractive index matching fluid (RIMF) was used in the detection cell to reduce scattering light and the noise level. The limit of detection (LOD) for fluorescein was 1.5 nM (SNR=3). The system exhibited linear responses in the range of 1 x 10(-8) to 5 x 10(-6)M (R=0.999). Application of the lamp LED-FD for the analysis of FITC-labeled ephedra herb extract by capillary electrophoresis was demonstrated.  相似文献   

13.
Sluszny C  He Y  Yeung ES 《Electrophoresis》2005,26(21):4197-4203
A continuous-wave 280 nm light-emitting diode (LED) was used as the excitation source for native fluorescence detection of proteins in CE. The operating current and temperature of the LED were optimized in order to achieve high luminescence power. It was found that a forward current of 30 mA and a temperature of approximately 5 degrees C gave the best S/N. By using a set of two ball lenses to focus light from the LED, we achieved a spot of approximately 200 mum with a power of 0.1-0.2 mW on the detection window. Fluorescence was collected with a ball lens at 90 degrees angle through a bandpass filter onto a photomultiplier tube. In CZE an LOD of 20 nM for conalbumin was reached. In capillary gel electrophoresis all eight proteins from a commercial standard kit were detected with high S/N. For a 10 microg/mL total protein mixture, S/N was better than 3 for all proteins in solution. Further improvement in LOD should be possible on utilization of an LED with higher luminescence power.  相似文献   

14.
A micro fluorescent analysis system is proposed using silicon micromachining. GaN blue light-emitting diode (LED) monolithically integrated on a silicon substrate is used as a light source for the fluorescent analysis system. The blue light suits the excitation of several dyes used commonly in fluorescent analysis. Silicon photodiode (Si-PD) that matches the visible and near infrared fluorescent wavelengths of dyes is integrated on a silicon substrate. Polydimethylsiloxane (PDMS) micro-channels are also stacked for flowing dye-sensitized liquid. Therefore, the proposed system is an integrated system that can be composed on a silicon platform, i.e. a bottom layer of Si-PD, a middle layer of GaN-LED on silicon substrate and a top layer of micro PDMS channel. An aperture is opened into the GaN-LED layer by deep reactive ion etching to create a ring-shaped GaN-LED and a through-hole for detection. The light from the ring-shaped GaN-LED in the middle layer excites the dye-sensitized liquid in the top micro-channel layer. The fluorescence emitted from dye is detected by the Si-PD on the bottom layer at an angle larger than 90 degrees from the direction of excitation. Therefore, the detection optics consist basically of a dark-field illumination optical system. In order to evaluate the performance of the integrated system, fluorescence of fluorescein isothiocyanate (FITC) solution flowing in the micro channel is measured. From the measurement, the noise, sensitivity and limit of detection in the fabricated system are evaluated for FITC dye to be 0.57 pA, 1.21 pA μM(-1) and 469 nM, respectively. From these results, a compact fluorescence analysis system is demonstrated.  相似文献   

15.
Yang B  Tian H  Xu J  Guan Y 《Talanta》2006,69(4):996-1000
An integrated light emitting diode (LED)-induced fluorescence detector was described and evaluated. The LED and its related components including lens and interference filter, the optical fiber used to collect fluorescence, and the capillary column are integrated into a substrate block, which eliminates the need of align procedure of the fiber and the capillary. Forty-fold enhancement of sensitivity was obtained compared with our previous work and the detection limit for fluorescein was 5 nM. Application of the detector for the analysis of FITC-labeled Ephedrine extract was demonstrated.  相似文献   

16.
The contribution of dissolved organic matter (DOM) released from phytoplankton (Microcystis aeruginosa) during cultivation and biodegradation was examined to clarify the causes of the organic pollution of Lake Biwa. Two peaks, peak 2 (retention time (RT) = 32 min) and peak 3 (RT = 35 min), were detected in the algal DOM released from Microcystis aeruginosa during cultivation and biodegradation by gel chromatography with a fluorescence detector (Ex = 340 nm, Em = 435 nm). As these peaks correspond with the peaks detected in the surface water of Lake Biwa, one can conclude that the algal DOM released from Microcystis aeruginosa during cultivation and biodegradation makes a considerable contribution to the refractory organic matter in Lake Biwa. Three fluorescence maxima were observed in the cultivation of Microcystis aeruginosa: a fulvic-like fluorescence peak (peak A) with Ex/Em values of 320/430 nm, a protein-like fluorescence peak (peak C) with Ex/Em values of 280/360 nm, and another peak with Ex/Em values of 240/370 nm. The fluorescence material of peak C has a larger MW than that of peak A. The algal-derived DOM from Microcystis aeruginosa has similar fluorescence to fulvic acid of soil origin but exhibits mainly hydrophilic characteristics. In the biodegradation of Microcystis aeruginosa, a fulvic-like fluorescence peak (peak B) with Ex/Em values of 250/440 nm and a peak with Ex/Em values of 320/380 nm were observed.  相似文献   

17.
Yang B  Tan F  Guan Y 《Talanta》2005,65(5):1303-1306
A novel fluorescence detector based on collinear scheme using a brightness light-emitting diode emitting at 470 nm as excitation source is described. The detector is assembled by all-solid-state optical-electronic components and coupled with capillary electrophoresis using on-column detection mode. Fluorescein isothiocyanate (FITC) and FITC-labeled amino acids and small molecule peptide as test analyte were used to evaluate the detector. The concentration limit of detection for FITC-labeled phenylalanine was 10 nM at a signal-to-noise ratio (S/N) of 3. The system exhibited good linear responses in the range of 1 × 10−7 to 2 × 10−5 M (R2 = 0.999).  相似文献   

18.
In this work, a new type of miniaturized fibre-coupled solid-state light source is demonstrated as an excitation source for fluorescence detection in capillary electrophoresis. It is based on a parabolically shaped micro-light emitting diode (μ-LED) array with a custom band-pass optical interference filter (IF) deposited at the back of the LED substrate. The GaN μ-LED array consisted of 270 individual μ-LED elements with a peak emission at 470 nm, each about 14 μm in diameter and operated as a single unit. Light was extracted through the transparent substrate material, and coupled to an optical fibre (OF, 400 μm in diameter, numerical aperture NA = 0.37), to form an integrated μ-LED-IF-OF light source component. This packaged μ-LED-IF-OF light source emitted approximately 225 μW of optical power at a bias current of 20 mA. The bandpass IF filter was designed to reduce undesirable LED light emissions in the wavelength range above 490 nm. Devices with and without IF were compared in terms of the optical power output, spectral characteristics as well as LOD values. While the IF consisted of only 7.5 pairs (15 layers) of SiO2/HfO2 layers, it resulted in an improvement of the baseline noise as well as the detection limit measured using fluorescein as test analyte, both by approximately one order of magnitude, with a LOD of 1 × 10−8 mol L−1 obtained under optimised conditions. The μ-LED-IF-OF light source was then demonstrated for use in capillary electrophoresis with fluorimetric detection. The limits of detection obtained by this device were compared to those obtained with a commercial fibre coupled LED device.  相似文献   

19.
Detection of autofluorescence at the skin surface is highly influenced by melanin and hemoglobin. Epidermal absorption and scattering may also be an influencing factor and is represented in this article as a quantitative parameter, epidermal thickness. To examine this parameter we measured the 370 nm fluorescence in vivo after excitation with 330 nm and the 455 nm fluorescence after excitation with 330 and 370 nm. Measurements were performed on sun-exposed skin at the dorsal aspect of the forearm and shoulder and on nonexposed buttock skin. Skin pigmentation and redness of the same body sites were measured by reflectance spectroscopy. The thickness of the stratum corneum and the cellular part of epidermis was quantified by light microscopy of skin biopsies. Multiple regression analysis was used to find correlations between autofluorescence and the potential influencing factors. We found a highly significant correlation of skin autofluorescence with pigmentation and redness for both emission wavelengths (Em). A small but significant correlation to epidermal thickness was found only for excitation wavelength (Ex) 370 nm and Em455 nm if body site was included in the analysis. No correlation between Ex330:Em370 and Ex330:Em455 and thickness of epidermis was found. For practical use, correction of skin autofluorescence for pigmentation is essential, correction for redness is of less importance and correction for epidermal thickness is unnecessary.  相似文献   

20.
基于麻黄碱及伪麻黄碱衍生物的光谱及化学性质,设计并构建了毛细管电泳/发光二极管诱导荧光检测系统.对关键光学元件进行组合选择,以蓝光发光二极管为光源,BP 470和BP 530分别为光源滤光片和荧光滤光片,光电倍增管检测信号,并对电泳分离系统的缓冲溶液、分离电压等参数进行优化;以FITC为衍生试剂,10 mmol/L Na2B4O7+ 16 mmol/L SDS为缓冲溶液,12 kV电压下可实现麻黄中麻黄碱和伪麻黄碱的基线分离.在0.25~10 mg/L范围内,麻黄碱和伪麻黄碱标准溶液的质量浓度与荧光响应的峰高之间呈较好的线性关系,相关系数(r)均大于0.99,其检出限分别为0.38 μg/L和0.29 μg/L,峰高的日内重复性(RSD)分别为2.0%和2.2%,日间重复性(RSD)分别为5.4%和5.1%.将该方法用于中药麻黄中麻黄碱和伪麻黄碱的测定,加标回收率分别为94%和107%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号