首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
High tap density Li3V2(PO4)3 cathode materials were synthesized using mixed LiF and LiNO3 as lithium precursors, LiNO3 was used as the sintering agent. Rietveld refinement results show that no impurities phases are detected in products. Particle size distribution and tap density measurement results show that particle size and tap density of products can be increased by the addition of LiNO3. Electrochemical characterization results show that electrochemical performance of products is declined with the increase in contents of LiNO3 in the lithium precursors. Only a small amount of LiNO3 added in the lithium precursors (mole ratio of LiNO3 to LiF is 1:9) can increase the tap density and also retain the good performance of products. Scanning electron microscopy (SEM) images indicate that the samples prepared by mixed lithium precursors present particles agglomerate, and the particle size increased with increase in contents of LiNO3. Large amount of LiNO3 added in the lithium precursors induces the particles to become spheric and smooth, which worsens the performance. The particles obtained with the mole ratio of LiNO3 to LiF in 1:9 show a flake-like shape with a high specific surface area, which leads to good electrochemical performance.  相似文献   

2.
Lithium-ion batteries with both high power and high energy density are one of the promising power sources for electric devices, especially for electric vehicles (EV) and other portable electric devices. One of the challenges is to improve the safety and electrochemical performance of lithium ion batteries anode materials. Li4Ti5O12 has been accepted as a novel anode material of power lithium ion battery instead of carbon because it can release lithium ions repeatedly for recharging and quickly for high current. However, Li4Ti5O12 has an insulating character due to the electronic structure characterized by empty Ti 3d-states, and this might result in the insufficient applications of LTO at high current discharge rate before any materials modifications. This review focuses first on the present status of Li4Ti5O12 including the synthesized method, doping, surface modification, application and theoretical calculation, then on its near future development.  相似文献   

3.
An acidification-hydrothermal method was developed to synthesize α-MnO2 nanowires, which was subsequently treated with ethanol, resulting in γ-Mn2O3 nanowire bundles on a large scale. The electrochemical characterization was carried out by cyclic voltammetry, which indicated that the α-MnO2 nanowires in 0.5 mol L−1 Na2SO4 aqueous electrolyte was of an excellent electrode material for supercapacitor at the scan rate of 10 mV S−1 in the range of 0.0-0.85 V.  相似文献   

4.
The development of lithium ion aqueous batteries is getting renewed interest due to their safety and low cost. We have demonstrated that the layer-structure LiCoO2 phase, the most commonly used electrode material in organic systems, can be successful delithiated and lithiated again in a water-based electrolyte at currents up to 2.70 A/g. The capacity is about 100 mAh/g at 0.135 A/g and can be tuned by cycling the electrode in different potential ranges. In fact, increasing the high cut-off voltage leads to higher specific capacity (up to 135 mAh/g) but the Coulomb efficiency is reduced (from 99.9% to 98.5%). The very good electrode kinetic is probably due to the high conductivity of the electrolyte solution (0.17 Scm− 1 at 25 °C) but this behavior is affected by the electrode load.  相似文献   

5.
The cycling performance of lithium–sulfur batteries in binary electrolytes based on tetra(ethylene glycol)dimethyl ether (TEGDME) and 1,3-dioxolane(DOL) with lithium nitrate (LiNO3) additive were investigated. The highest ionic conductivity was obtained for 1 M LiN(CF3SO2)2 (LiTFSI) in TEGDME/DOL?=?33:67(volume ratio)-based electrolyte. The cyclic efficiency of lithium–sulfur batteries was dramatically increased with LiNO3 additive as a shuttle inhibitor in electrolytes. The lithium–sulfur cell assembled with 1 M LiTFSI in TEGDME/DOL containing 0.2 M LiNO3 additive for electrolyte, the elemental sulfur for cathode, and the lithium metal for anode demonstrated the initial discharge capacity of about 900 mAh g?1 and an enhanced cycling performance.  相似文献   

6.
The effect of rare earth compound, Gd2O3, on the microstructure and the hydrogen evolution property of Ni–Co alloy electrode was studied. The morphology and microstructure were characterized by SEM and XRD, respectively, and the electrocatalytic efficiency was evaluated on the basis of electrochemical data obtained from steady-state polarization curves, Tafel curves and electrochemical impedance spectroscopy measurements carried out in 0.50 M Na2SO4+0.10 M H2SO4 solution. It was found that the embedded Gd2O3 particles largely enhanced the electrocatalytic activity of Ni–Co alloy electrode to hydrogen evolution reaction.  相似文献   

7.
Titanium dioxide (TiO2) thin films prepared by cathodic electrodeposition on indium-tin-oxide coated glass substrates from simple aqueous peroxo-titanium complex solutions have been studied as a function of sintering temperature (25-500 °C). The films crystallized in to anatase phase at relatively low temperature (300 °C). Electrochemical properties of amorphous and anatase films were investigated by cyclic voltammogram (CV) in lithium ion containing organic electrolyte. All the films were found to show reversible electrochemical properties upon Li+ ion intercalation. The effects of sintering temperature on the crystallinity and consequently on the electrochemical properties of TiO2 has been discussed.  相似文献   

8.
刘在海  张文彬  王刚 《物理学报》1990,39(10):1647-1652
用化学方法从层状化合物LiVO2中引出0.5个Li后得到Li0.5VO2,再经过低温真空热处理制备出尖晶石结构化合物LiV2O4,类似地处理Li0.465VO2,得到缺Li的Li0.93V2O4,LiV2O4和Li0.93V 关键词:  相似文献   

9.
Oxide and silver paste were applied on the BaO-doped Bi2O3 electrolyte and their behavior was studied as a function of temperature and oxygen partial pressure. Interface resistance of most oxide/electrolyte were of the same order of magnitude with those of Ag paste/electrolyte in air (300–500°C). A high electrode capacitance of (0.8–1.7)×10?2 F/cm2 was observed for the silver electrode at 450°C in the PO2 region of 1–10?5 atm.  相似文献   

10.
A novel technique has been developed to synthesize Sn-Fe-Mo-Al2O3, while nanoscale dispersion of a highly active tin phase was finely distributed in a stable inert multi-phase. The precursor was prepared by co-precipitation method with SnCl4, FeCl3, AlCl3 and (NH4)6Mo7O24 as the raw materials. Sn-Fe-Mo-Al2O3 mixture was produced by reducing the precursor with H2. The product was characterized by X-ray diffraction (XRD), ICP and scanning electron microscopy (SEM). The performance of the electrode was investigated. The Sn-Fe-Mo-Al2O3 electrode was found to have an initial charge capacity of over 461 mAh/g, and a reversible volumetric capacity of 2090 mAh/cm3, which is two times larger than that of graphite electrode (800 mAh/cm3). The coulomb efficiency in the first cycle was over 55%, but its cyclability was not improved significantly. In order to enhance the cycle performance, we investigated the anode after heat treated at 270 °C for 12 h. Under the same condition, the first charge-discharge characteristics were almost equivalent to the as-coated anode, and the retention capacity ratio after 20 cycles was improved from 41.1% to 86.5%. The heat-treated Sn-Fe-Mo-Al2O3 electrode exhibited better cycle life. The electrochemical reaction of the Sn-Fe-Mo-Al2O3 electrode with Li may obey the alloying-dealloying mechanism of LixSn(x?4.4) formation in the other tin-based electrodes.  相似文献   

11.
LiFePO4在含Li+水溶液中的电化学性能稳定性与水溶液的pH值密切相关,当溶液的pH值达到11后LiFePO4在充放电循环过程中的容量衰减十分明显. 通过循环伏安测试、交流阻抗测试、电极充放电性能测试、非原位X射线衍射测试以及化学分析的方式对其容量衰减机理进行了研究. 结果表明LiFePO4在pH=7的LiNO3水溶液中具有相对最高的电化学稳定性,但是LiFePO4材料在水溶液中较之其在有机电解液中依然会有较差的电化学性能表现. 认为LiFePO4在水介质中的容量衰减现象归因于其在持续充放电过程中的Li、Fe、P溶解,同时电极表面也会附着一层沉淀物. 这些最终导致了材料晶体结构的破坏、电极极化的增大以及电极容量的衰减.  相似文献   

12.
Manganese oxide (Mn3O4) nanoparticles with average diameter of 15 nm were prepared using alcohol solution of manganese chloride as starting material via a facile solution-combusting method. The flame core zone was chosen to prepare mono-dispersed and high crystalline products, which were employed to modify glassy carbon electrode and detect dopamine via cyclic voltammetry. The results exhibited excellent electrochemical sensitivity. A linear relationship between the concentration of dopamine and its oxidation peak current was obtained by differential pulse voltammetry, which will find wide application in the biological detection.  相似文献   

13.
潘慧霖  胡勇胜  李泓  陈立泉 《中国物理 B》2011,20(11):118202-118202
The rate and cycling performances of the electrode materials are affected by many factors in a practical complicated electrode process. Learning about the limiting step in a practical electrochemical reaction is very important to effectively improve the electrochemical performances of the electrode materials. Li4Ti5O12, as a zero-strain material, has been considered as a promising anode material for long life Li-ion batteries. In this study, our results show that the Li4Ti5O12 pasted on Cu or graphite felt current collector exhibits unexpectedly higher rate performance than on Al current collector. For Li4Ti5O12, the electron transfer between current collector and active material is the critical factor that affects its rate and cycling performances.  相似文献   

14.
The formation of a passivating film on lithium electrodes is demonstrated using ac impedance analysis. The film is formed by an electrochemical reaction between the lithium electrode and the electrolyte, which consists of poly (ethylene oxide) and LiCF3SO3. Effects of the salt concentration in the electrolyte and temperature on the nature and conductivity of such films are described. Data obtained from the literature for equivalent systems was interpreted according to the proposed film formation mechanism. The rate-determining step in the dissolution or deposition process of the lithium may, in some cases, be defined by the interphase film.  相似文献   

15.
An ion layer gas reaction (ILGAR) dip-coating process for the deposition of homogeneous spinel structured Li2CoMn3O8 thin layers has been developed. Thin film cathodes for use in high-energy density lithium batteries with thicknesses of about 200 nm have been prepared. The films were found to be X-ray amorphous after preparation. After annealing at 700°C in air for 2 h, the spinel structure of Li2CoMn3O8 was observed by X-ray diffraction analysis. The composition of the surface was studied by XPS, which indicated enhanced Li and Mn concentrations as a result of the rinsing process and different solubilities of the precursor salts. The electrochemical behavior was investigated by separating the annealed electrode sample from a conventional organic lithium ion-conducting electrolyte by a layer of LiPON solid electrolyte and using elemental lithium as counter electrode. A capacity of 110.8 mAh/g was observed which is related to the valence changes of Mn and Co in the spinel structure.  相似文献   

16.
The 5.0, 8.0, and 10.0 wt% NiCl2-modified LiV3O8 materials are successfully prepared and the effects of NiCl2 modification on the electrochemical performance of LiV3O8 cathode have been investigated. The structural and surface morphologic properties of synthesized materials are characterized by X-ray diffraction and scanning electron microscopy. The electrochemical properties are investigated by charge–discharge testing and cyclic voltammetry. It is found that 8.0 wt% NiCl2-modified LiV3O8 shows excellent electrochemical properties. The initial discharge capacity of 8.0 wt% NiCl2-modified LiV3O8 is much higher than that of pristine LiV3O8, and can attain 336.7 mAh g?1 at the current rate of 0.5 C (300 mA g?1 is assumed to be 1 C rate). Additionally, NiCl2 modification significantly improves the cyclability of LiV3O8. The NiCl2 modification is shown to be able to suppress the capacity fade of LiV3O8 without specific capacity expense by suppressing the characteristic phase transitions during cycling.  相似文献   

17.
The crystallization mechanism and conductivity of lithium aluminum germanium phosphate [LAGP] glass-ceramics fabricated from Li1+xAlxGe2−x(PO4)3 (x=0.0-0.7) glass system were investigated as a function of Al2O3 additions. A non-isothermal analysis was performed to study the crystallization behavior of LAGP glass-ceramics at various heating rates (5-25K min−1) by the Kissinger equation and the Augis-Bennett equation, illustrating volume crystallization for the glass-ceramics. The crystal identification and microstructure in glass-ceramics containing various Al2O3 contents were analyzed by means of XRD and FESEM. The main phase of the glass-ceramics was found to be LiGe2(PO4)3, with AlPO4 as the impurity phase. Additionally the highest total ionic conductivity (5.8×10−4 S/cm) at room temperature was obtained when x=0.5 for Li1+xAlxGe2−x(PO4)3 (x=0.0-0.7) glass-ceramics, suggesting that it was a promising electrolyte for practical application in all-solid-state lithium batteries.  相似文献   

18.
Porous LiNi0.75Co0.25O2 microspheres are successfully prepared by a simple hydrothermal process by using H[Ni0.75Co0.25OOH]3 and LiOH as starting materials in the presence of urea for the first time. The synthesized samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area (SBET), and electrochemical performance. The synthesized LiNi0.75Co0.25O2 has a good electrochemical performance with an initial discharge capacity of 169.3 mA g−1 and good capacity retention of 96.7% after 50 cycles at 0.2 C (25 mA g−1). The electrochemical lithium ion insertion/extraction process is quite reversible even at 5 C. Furthermore, the structure in the charge-discharge process is stable and the impedance increased slowly during cycling.  相似文献   

19.
A fabrication of all-solid-state thin-film rechargeable lithium ion batteries by sol-gel method is expected to achieve both the simplification and cost reduction for fabrication process. TiO2 thin film electrode was prepared by PVP (polyvinylpyrrolidone) sol-gel method combined with spin-coating on Li1 + xAlxGe2 − x(PO4)3 (LAGP) solid electrolyte which has wide electrochemical window. The thin film was composed of anatase TiO2 that is the most active phase for Li insertion and extraction and contacted well with LAGP substrate. In the cyclic voltammogram, a redox couple was observed at 1.8 V vs. Li/Li+ assigned to Li insertion/extraction into/from anatase TiO2, indicating that the thin film worked as electrode for lithium battery. The charge and discharge test in various charge and discharge rates revealed that the discharge process (delithiation) is thought to be faster than charge process (lithiation). It is attested that the sol-gel process, which derives both simplification and cost reduction for fabrication process, can be applied to thin film battery using LAGP solid electrolyte.  相似文献   

20.
By a facile LiNO3 flux method, lithium manganese oxide composites (xLi4Mn5O12? yLi2MnO3) were synthesized using a hierarchical organization precursor of manganese dioxide. Li4Mn5O12 and Li2MnO3 have spinel and rocksalt structures, respectively. The lithiation and structural transformation from the precursor to the composites occurred topotactically from exterior toward interior in the precursor particle with the increase of reaction time, and the composites had core-shell spinel@rocksalt structures in addition to the original hierarchical core-shell organization. The electrochemical measurements at 50 °C after 50 cycles confirmed that a typical spinel@rocksalt cathode had higher capacity retention (87.1%) than that with the composition close to the stoichiometric spinel (64.6%), indicating the Li2MnO3 shell can improve cycling stability for the composite electrode at elevated temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号