首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
研究微流控聚焦装置液滴生成特性是液滴微流控芯片结构优化设计的基础。利用水平集方法结合有限元技术建立了微流控聚焦装置内液滴生成过程的数值计算模型,并分析了分散相与连续相流速比、微流道几何结构对液滴生成机制和液滴生成特性的影响规律。在一定的流速比、微流道入口宽度比范围内,均生成了性态良好的液滴。当分散相与连续相入口宽度比大于1时,液滴尺寸随连续相入口宽度、连续相流速的增大而减小,液滴生成频率随连续相入口宽度、连续相流速的增大而增大;当分散相与连续相入口宽度比小于1时,液滴尺寸随分散相入口宽度增大而增大,随连续相流速的增大而减小,液滴生成频率随分散相入口宽度、连续相流速的增大而增大。数值计算结果表明:微流控聚焦装置液滴生成受几何结构、流速及两相流体物性参数的耦合作用,模拟计算的结果可为微流控聚焦装置结构优化设计提供指导。  相似文献   

2.
T型微通道内溶胶液滴形成过程   总被引:1,自引:1,他引:0       下载免费PDF全文
以制备空心玻璃微球的前体溶胶和硅油为原料,采用实验观测和数值模拟的方法,对T型微通道内溶胶乳液形成过程进行研究。基于液滴的受力分析,建立了液滴形成过程的数学模型,探讨了液滴大小的变化规律。研究结果表明:对于给定的物料体系和T型微通道,通过改变两相流量可以有效地控制液滴尺寸;在相同的分散相流量条件下,增大连续相流量可以减小液滴尺寸,但连续相流量大到一定程度后,这种效果逐渐减弱;在给定的连续相流量条件下,分散相流量越大,液滴直径越大;利用数学模型计算出的液滴直径与实验值偏差在10%左右。根据模拟结果和摄像分析,液滴产生过程经历了静态长大和缩颈剥离两个主要阶段。  相似文献   

3.
采用软模板法制备出了聚二甲基硅氧烷微流控装置。利用该装置讨论了正硅酸乙酯和氨水的用量分别对反应体系凝胶化时间的影响,确定了制备SiO2微球的优化反应体系,即二甲基乙酰胺、正硅酸乙酯和氨水的体积比为8∶4∶1,实验所需的反应温度为60 ℃。实验发现:在微流体通道中,分散相的流速越大,粒径越大;连续相流速越大,粒径越小。因此,通过控制微流控装置中分散相和连续相的流速制备了粒径40~220 m的单分散SiO2微球,并对其形貌进行表征。光学显微镜和粒径分析均表明所制备的SiO2微球球形度高,单分散性好。  相似文献   

4.
基于液滴的转移方法可实现微操作任务中微对象的拾取,锥形操作探针则常作为一种毛细力微操作执行工具。主要研究在空气冷凝模式下锥形探针端面的液滴形成。建立了微液滴形成的数学模型,主要包括初始液滴的形成、液滴的合并和液滴的移动,研究了影响操作液滴的关键参数,分析表明:过冷度决定最小液滴半径。对单液滴的生长机制进行理论分析,并通过数值求解的方法模拟了锥形操作探针端面的液滴形成。搭建实验测试平台,实验研究了微尺度下锥形微操作探针端面的液滴形成。实验结果表明:在空气冷凝模式下,操作探针端面能够形成微液滴。经过初始液滴的形成,液滴的合并和移动等过程最终可形成稳定的微液滴,且不同锥顶角下液滴的形成呈现多样化。  相似文献   

5.
基于液滴的转移方法可实现微操作任务中微对象的拾取,锥形操作探针则常作为一种毛细力微操作执行工具。主要研究在空气冷凝模式下锥形探针端面的液滴形成。建立了微液滴形成的数学模型,主要包括初始液滴的形成、液滴的合并和液滴的移动,研究了影响操作液滴的关键参数,分析表明:过冷度决定最小液滴半径。对单液滴的生长机制进行理论分析,并通过数值求解的方法模拟了锥形操作探针端面的液滴形成。搭建实验测试平台,实验研究了微尺度下锥形微操作探针端面的液滴形成。实验结果表明:在空气冷凝模式下,操作探针端面能够形成微液滴。经过初始液滴的形成,液滴的合并和移动等过程最终可形成稳定的微液滴,且不同锥顶角下液滴的形成呈现多样化。  相似文献   

6.
微尺度型腔内液态金属流动规律模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
修正了传统的Navier-Stoke方程,并利用修正后的方程与Fluent软件对微尺度型腔内Zn-Al合金微流动规律进行了数值模拟.模拟结果表明:液态金属在微尺度管道内的流动规律在管径为0.5mm时出现临界状态,管径越细,速度附面层相对厚度就越大.同时,微管流动存在着宏观流动中没有的“凸进效应”,且随着入口压力增大,流动前沿自由液面的凸进效应减弱.在流动前沿区域和上游区域之间出现负压力梯度区,且管径越细越明显. 关键词: 微管道 微流动 Zn-Al合金  相似文献   

7.
对固定荷电液滴吸附细颗粒物进行了数值模拟计算。采用微漏电模型计算电场分布和作用在液滴上的电场力。利用VOF模型追踪液滴自由界面,考虑自由界面流体体积分数过渡引起的物性参数变化。通过求解牛顿方程计算固体细颗粒物的运动轨迹。计算模拟了细颗粒物在库仑力、电场力、流体黏阻以及重力的作用下脱离基底被荷电液滴捕集的全过程,分析了不同电场强度、颗粒粒径以及液滴粒径等因素对吸附效率的影响。计算结果与实验结果吻合较好。  相似文献   

8.
蒋涛  陆林广  陆伟刚 《物理学报》2013,62(22):224701-224701
运用一种改进光滑粒子动力学(SPH)方法模拟了相溶和不相溶两种情况下的等直径微液滴碰撞动力学过程. 为提高传统SPH方法的数值精度和稳定性, 采用一种不涉及核导数计算的核梯度改进形式; 为处理液滴界面张力采用修正的van der Waals表面张力模型. 通过模拟牛顿液滴碰撞聚并变形过程并与相关文献或试验结果进行对比, 验证了改进SPH 方法模拟微液滴碰撞过程的可靠性. 随后, 研究了基于van der Waals模型相溶聚合物微液滴碰撞聚并变形过程及不相溶微液滴碰撞后的反弹、分离过程, 讨论了碰撞过程中碰撞速度、碰撞角度、密度比等参数对碰撞变形过程的影响, 分析了流体桥、旋转角度等因素的变化情况. 关键词: 光滑粒子动力学 微液滴 聚合物液滴 碰撞  相似文献   

9.
水平管内流动蒸发数值模拟及可视化研究   总被引:1,自引:0,他引:1  
为了研究管内流动蒸发的性能,利用FLUENT对外径为7 mm光管内的流动蒸发过程进行了数值模拟,同时对外径为7 mm的光管和微肋管内的蒸发过程进行了可视化实验.所用工质为R22,实验工况为:质量流速220 kg/(m2s),7℃蒸发温度,15%~20%的入口干度,5~6℃的出口过热度,数值模拟和实验中均观测了流动蒸发中的旋流和脉冲喷射,分析了旋流及脉冲对换热等的影响.  相似文献   

10.
《工程热物理学报》2021,42(10):2605-2614
采用柱状旋流分离器进行高含水采出液预分水操作,具有高效、紧凑、经济等优点。本文着眼于旋流分离器的分水效果,通过室内实验研究了入口混合流速、分水比和入口含油浓度对柱状旋流分离器预分水性能的影响规律并绘制操作参数边界示意图。采用数值模拟方法,基于PBM模型模拟分析分离器内部的油滴粒径分布规律,揭示了造成柱状旋流分离器性能恶化的原因。结果表明:入口混合流速与分水比具有协同作用,高入口混合流速与高分水比条件不利于分离器分水操作的进行,且这种协同作用在入口含油浓度增加时更加显著;在分水比F_(bi)≥0.5时,随着入口含油浓度的增加,入口混合流速可操作区间逐渐缩小。  相似文献   

11.
Yong Kong  Guowei Yang 《Optik》2011,122(19):1723-1729
A voltage controlled multiple-stage tunable filter with broad continuous tuning range was studied in theory and experiment. Four liquid crystal retarders, two quartz plates with certain integral ratio phase retardations and five polarization films were assembled into a traditional Lyot filter. The tunable function was achieved by using the electro-birefringence effect of liquid crystal. The result of numerical simulation showed that the spectral resolution was ∼10 nm around bands of 500-700 nm; side forms rejection ratio and FWHM changed in contrast to considering and not considering the birefringence dispersion effect of liquid crystal and quartz; the shape of filtered light displayed by spectral photometer would be affected by spectrum bands of light source in spectral photometer. A four-stage tunable filter was made and tested, experiment results agreed with the numerical simulation results very well, the research results could be applied as reference for the study of broad spectrum tunable filters.  相似文献   

12.
We present numerical studies of active flow control applied to jet flow. We focus on rectangular jets, which are more unstable than their circular counterparts. The higher level of instability is expressed mainly by an increased intensity of mixing of the main flow with its surroundings. We analyse jets with aspect ratio Ar = 1, Ar = 2 and Ar = 3 at Re = 10,000. It is shown that the application of control with a suitable excitation (forcing) at the jet nozzle can amplify the mixing and qualitatively alter the character of the flow. This can result in an increased spreading rate of the jet or even splitting into nearly separate streams. The excitations studied are obtained from a superposition of axial and flapping forcing terms. We consider the effect of varying parameters such as the frequency of the excitations and phase shift between forcing components. The amplitude of the forcing is 10% of the inlet centreline jet velocity and the forcing frequencies correspond to Strouhal numbers in a range St = 0.3–0.7. It is shown that qualitatively different flow regimes and a rich variety of possible flow behaviours can be achieved simply by changing aspect ratio and forcing parameters. The numerical results are obtained applying large eddy simulation in combination with a high-order compact difference code for incompressible flows. The solutions are validated based on experimental data from literature for non-excited jets for Ar = 1 at Re = 1.84 × 105 and Ar = 2 at Re = 1.28 × 105. Both the mean velocities as well as their fluctuations are predicted with good accuracy.  相似文献   

13.
Over 10 years ago we proposed an experiment on measuring the characteristics of radiative neutron decay in papers [1, 2]. At the same time we had published the theoretical spectrum of radiative gamma quanta, calculated within the framework of the electroweak interactions, on the basis of which we proposed the methodology for the future experiment [3, 4]. However, because we were denied beam time on the intensive cold neutron beam at ILL (Grenoble, France) for a number of years, we could only conduct the experiment in 2005 on the newly opened FRMII reactor of Technical University of Muenchen. The main result of this experiment was the discovery of radiative neutron decay and the measurement of its relative intensity B.R. = (3.2 ± 1.6) × 10−3 with C.L. = 99.7% for radiative gamma quanta with energy over 35 kev [5, 6]. Over a year after our first announcement about the results of the conducted experiment, “Nature” [7] published a letter asserting that its authors have also measured the branching ratio of radiative neutron decay B.R. = (3.13 ± 0.34) × 10−3 with c.l. = 68% and gamma quanta energy from 15 to 340 kev. This article aims to compare these two experiments. It is shown that the use of strong magnetic fields in the NIST (Washington, USA) experiment methodology not only prevents any exact measurement of the branching ratio and identification of radiative neutron decay events, but also makes registration of ordinary neutron decay events impossible.  相似文献   

14.
《Current Applied Physics》2015,15(7):780-783
In this study, we demonstrate the simulated subthreshold swing (SS) of silicon nanowire tunneling field-effect transistors (NWTFETs) by varying both the channel diameter from 10 nm to 40 nm and the gate coverage ratio from 30% to 100%. Our simulation work reveals that both a decrease in the channel diameter and an increase in the gate coverage ratio contribute to a reduction in the SS. Additionally, our work shows that the magnitude of the on-current depends linearly on the gate coverage ratio and that the drain current increases with a decrease in the channel diameter. Thus, an NWTFET with a channel diameter of 10 nm and a gate coverage ratio of 100% exhibits superior electrical characteristics over other silicon NWTFETs in that the NWTFET shows a point SS of 22.7 mV/dec, an average SS of 56.3 mV/dec, an on/off current ratio of ∼1013, and an on-current of ∼10−5 A/μm.  相似文献   

15.
Su-Ping Fang  Lei-Jie Wang  Aizoh Kubo 《Optik》2011,122(14):1301-5452
A laser interferometric system (LIS) based on oblique incidence and phase shifting technique has been designed for the measurement of gear tooth flank. For a spur involute gear with a module of 2.0, 60 teeth, and a 20-mm facewidth, some critical parameters of the LIS are calculated, the oblique incidence angle is 84.5°, the beam diameter is 20 mm, and the focal length of imaging lens is 100 mm, and the resolution of CCD camera is 1360 × 1024 pixels. To test the capability of the designed LIS, the numerical simulation is done for the LIS. The actual LIS is built on an optical platform and the experiment is carried out. Both interference fringe patterns from the numerical simulation and the actual experiment are good and coincident with each other, which show the designed LIS is feasible.  相似文献   

16.
The results of numerical simulation of the structure of non-isothermal polydisperse bubbly turbulent flow and heat transfer behind a sudden tube expansion are presented. The study was carried out at a change in the initial diameter of the air bubbles within d m1 = 1–5 mm and their volumetric void fraction β = 0–10 %. Small bubbles are available in almost the entire cross section of the tube, while the large bubbles pass mainly through the flow core. An increase in the size of dispersed phase causes the growth of turbulence in the liquid phase due to flow turbulization, when there is a separated flow of liquid past the large bubbles. Adding the air bubbles causes a significant reduction in the length of the separation zone and heat transfer enhancement, and these effects increase with increasing bubble size and their gas volumetric flow rate ratio.  相似文献   

17.
This paper reports the emission characteristics of leaf and wood biochar (LC500 and WC500) pyrolysis in a drop tube furnace at 1300 °C in argon atmosphere. The char yields at 1300 °C are ~ 65% and ~ 73% respectively for LC500 and WC500. Over 60% Mg, Ca, S, Al, Fe and Si are retained in char after pyrolysis at 1300 °C. The retentions of Na and K in the char from LC500 pyrolysis are lower than those in the char from WC500 pyrolysis due to release via enhanced chlorination as a result of much higher Cl content in LC500. Particulate matter (PM) with aerodynamic diameter of < 10 µm (i.e. PM10) from LC500 and WC500 pyrolysis exhibits a bimodal distribution with a fine mode diameter of 0.011 µm and a coarse mode diameter of 4.087 µm. The PM10 yield for LC500 pyrolysis is ~ 8.2 mg/g, higher than that of WC500 pyrolysis (~2.1 mg/g). Samples in PM1-10 (i.e. PM with aerodynamic diameter 1 µm – 10 µm) are char fragments that have irregular shapes and similar molar ratio of (Na+K + 2Mg+2Ca)/(Cl+2S+3P) as the char collected in the cyclone. In PM1 (i.e. PM with aerodynamic diameter < 1 µm), the main components in sample are inorganic species, and carbon only contributes to ~5% and ~8% the PM1 produced from rapid pyrolysis of LC500 and WC500, respectively. Na, K and Cl are main inorganic species in PM1, contributing ~ 98.8% and ~ 97.5% to all inorganic species. Na, K and Cl from rapid pyrolysis of biochar have a unimodal distribution with a mode diameter of 0.011 µm. In PM1–10, Ca is the main inorganic specie, contributing to ~71.2% and ~65.3% to all inorganic species in PM1–10 from pyrolysis of LC500 and WC500, respectively.  相似文献   

18.

Abstract  

This paper describes experimental and numerical investigations into the multiple shock waves/turbulent boundary layer interaction in a supersonic inlet. The test model has a rectangular shape with an asymmetric subsonic diffuser of 5°. Experiments were conducted to obtain the visualization images and static pressure data by using supersonic wind tunnel. Numerical simulation was performed by solving the RANS equations with the Menter’s SST turbulent model. The inflow condition was a free-stream Mach number of 2.5 and a unit Reynolds number of 7.6 × 107/m. Numerical results showed good agreement with the experimental results. Based on this agreement, the flow characteristics which are often very difficult to obtain experimentally alone were analyzed with the aid of numerical simulation. The structures, pressure and velocity distributions, and total pressure loss of the pseudo-shock wave in the supersonic inlet were presented in detail from flow visualization images and static pressures.  相似文献   

19.
This study investigated the experimental coefficient in the mathematical correlation for the pressure gradient of spherical capsule train flow according to flow regimes. The investigation was carried out in the 1.2 × 104 < Re < 1.5 × 105 range and under transport concentration of 5 – 30 %. Deviation between the pressure drops measured by experiment and the mathematical correlation was calculated based on new experimental coefficients. The total pressure gradient in the two‐phase flow of the mixture was distinguished as pressure gradients caused by homogeneous flow and those caused by pressure drops, depending on the rotational movement of the capsules. The experimental findings indicate that at lower concentrations, the losses caused by the rotational movement are low, but the losses caused by the homogeneous flow are high. Losses caused by the rotational movement increase as the concentration increases.  相似文献   

20.
Large eddy simulation (LES) is applied to a pulverized coal jet flame ignited by a preheated gas flow. The simulation results are compared to experimental data obtained for the inlet stoichiometric ratios of 0.14, 0.22, and 0.36. An accurate and computationally inexpensive devolatilization model suitable for combustion simulation in LES is proposed and incorporated into the LES. The numerical results of gas temperature and coal burnout on the centerline show good agreement with the experimental data. Two kinds of lift-off heights are introduced to verify the combustion simulation. One is the height from the primary nozzle exit to the starting point of the growing flame region. The other is the height from the primary nozzle exit to the starting point of the continuous flame region. The calculated results of the two lift-off heights show good agreement with the experimental data. In contrast to LES, the standard kε model overestimates the lift-off heights because it calculates time-averaged temperature which does not contain information about local flame structure. The stoichiometric ratio in the gas phase at the starting point of the growing flame region is found to be independent of the inlet stoichiometric ratio in the range from 0.14 to 0.36.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号