首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ginkgo leave, a naturally abundant resource, has been successfully employed as the raw material to prepare nitrogen doped porous carbon (NDPC) materials. The preparation of the porous carbon does not involve assistance of any activation or template technique. The as‐obtained NDPC shows favorable features for electrochemical energy storage, which can not only provide multiple sites for the storage and insertion of Li ions, but also facilitate rapid mass transport of electrons and Li ions. As a result, the NDPC when evaluated as an anode material for lithium ion batteries delivers high reversible capacity (505 mAh·g?1 at 0.1 C), excellent rate capability (190 mAh·g?1 at 10 C). These favorable properties suggest that the NDPC can be a promising anode material for lithium ion batteries (LIBs).  相似文献   

2.
本文以聚氧化乙烯为碳源,用柠檬酸辅助湿化学法合成了高倍率的碳包覆的LiFePO4。使用热重、粉末X射线衍射、扫描电子显微镜、透射电子显微镜、循环伏安、电化学阻抗和恒流充放电表征材料的结构和电化学性质。结果表明,该材料组成为5 wt%疏松多孔的碳包覆相纯度很高的小的LiFePO4颗粒。该材料适用于高倍率充放电,在5 C、10 C和20C的放电倍率下可以分别得到120、90和60 mAh·g-1的稳定容量。  相似文献   

3.
Mesoporous carbons (MCs) were used as the matrixes to load sulfur for lithium sulfur (Li-S) batteries, and pore sizes were tuned by heat treatment at different high temperatures. The cathode material shows the highest discharge capacity of 1158.2 mAh g?1 at the pore size of 4.1 nm among as-prepared nitrogen-free materials with different sizes. Meanwhile, the nitrogen doping of mesoporous carbon helps to inhibit the diffusion of polysulfide species via an enhanced surface adsorption. The carbon/sulfur containing N (4.56%) shows a high initial discharge capacity of 1315.8 mAh g?1 and retains about 939 mAh g?1 after 100 cycles at 0.2 C. The improved electrochemical performance is ascribed to the proper pore size, surface chemical property, and conductivity of the N-doped carbon material.  相似文献   

4.
In this work, a novel pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 hybrid was prepared. This sandwiched hybrid vertically anchors on graphene oxide as anode materials for sodium-ion batteries. Such electrode was fabricated by facile ionic liquid-assisted reflux and annealing methods. Owing to rational structure and enhancement from pyrrolic nitrogen dopant, this unique MoS2/C-graphene hybrid exhibits reversible specific capacity of 486 mAh g?1 after 1000 cycles with a low average fading capacity of 0.15 mAh g?1 (fading cyclic rate of ca. 0.03% per cycle). A capacity of 330 mAh g?1 is remained at the current densities of 10.0 A g?1. The proposed strategy provides a convenient way to create new pyrrolic nitrogen-doped hybrids for energy field and other related applications.  相似文献   

5.
Porous structure Li[Ni1/3Co1/3Mn1/3]O2 has been synthesized via a facile carbonate co‐precipitation method using Li2CO3 as template and lithium‐source. The physical and electrochemical properties of the materials were examined by many characterizations including TGA, XRD, SEM, EDS, TEM, BET, CV, EIS and galvanostatic charge‐discharge cycling. The results indicate that the as‐synthesized materials by this novel method own a well‐ordered layered structure α‐NaFeO2 [space group: R‐3m(166)], porous morphology, and an average primary particle size of about 150 nm. The porous material exhibits larger specific surface area and delivers a high initial capacity of 169.9 mAh·g?1 at 0.1 C (1 C=180 mA·g?1) between 2.7 and 4.3 V, and 126.4, 115.7 mAh·g?1 are still respectively reached at high rate of 10 C and 20 C. After 100 charge‐discharge cycles at 1 C, the capacity retention is 93.3%, indicating the excellent cycling stability.  相似文献   

6.
不同碳源对多孔球形LiFePO4/C复合材料的影响   总被引:2,自引:0,他引:2  
采用喷雾干燥-碳热还原法(SDCTM),分别研究了无机和有机碳源对锂离子正极材料LiFePO4/C形貌、结构及其充放电性能的影响。结果表明:以无机碳源炭黑制备的LiFePO4/C呈不规则球形,一次颗粒粒径在800nm左右,比表面积为2m2·g-1,0.1C放电比容量为107.3mAh·g-1。而以有机碳源制备的LiFePO4/C,其形貌较为规则,呈多孔球形结构,具有较高的比表面积和放电比容量。其中,以柠檬酸为碳源制备的多孔球形LiFePO4/C复合材料,其孔径均在50nm左右,比表面积可达32m2·g-1;在室温下,0.1C和10C首次放电比容量分别为158.8和87.2mAh·g-1,具有优异的循环性能和高倍率充放电性能。  相似文献   

7.
One‐dimensional manganese oxide nanobelt bundles with birnessite‐type structure have been synthesized by a hydrothermal process in a NaOH solution employing K‐type layered manganese oxide as a precursor. The obtained manganese oxide nanobelt bundles exhibit excellent discharge properties and cycle stability. The initial capacity is 376 mAh·g?1 and the reversible capacity of 243 mAh·g?1 is maintained after the 50th cycle at a current density of 20 mA·g?1. Meanwhile, the manganese oxide nanobelt bundles show an excellent cycle performance even if at relative high current density.  相似文献   

8.
This study describes a self‐doping and additive‐free strategy for the synthesis of metal‐nitrogen‐doped porous carbon materials (CMs) via carbonizing well‐tailored precursors, metal‐containing ionic liquids (M‐ILs). The organic skeleton in M‐ILs serves as both carbon and nitrogen sources, while metal ions acts as porogen and metallic dopants. A high nitrogen content, appropriate content of metallic species and hierarchical porosity synergistically endow the resultant CMs (MIBA‐M‐T) as effective electrocatalysts for the oxygen reduction reaction (ORR). MIBA‐Fe‐900 with a high specific surface area of 1567 m2 g?1 exhibits an activity similar to that of Pt/C catalyst, a higher tolerance to methanol than Pt/C, and long‐term durability. This work supplies a simple and convenient route for the preparation of metal‐containing carbon electrocatalysts.  相似文献   

9.
Here, carbon nanotube@N‐doped mesoporous carbon (CNT@N‐PC) composites were synthesized by using resorcinol‐formaldehyde resin as carbon source, ionic liquids (ILs) as template, and nitrogen sources and tetraethyl orthosilicate (TEOS) as assistant agent. The use of ILs‐modified CNT with nitrogen and TEOS facilitated the generation of a richer mesoporous structure. The obtained CNT@N‐PC was composed of a CNT core and mesoporous carbon particles around it. CNT@N‐PC showed a 3D network structure like “dewy cobwebs” and had a high surface area of 857 m2 g?1, uniform pore size distribution (3.0 nm), and suitable N content (4.9 at.%). When used as supercapacitor electrode, the CNT@N‐PC exhibited a high specific capacitance (244 F g?1 at 1 A g?1), good rate capability and favorable capacitance retention (92.5 % capacitive retention after 5000 cycles), demonstrating the potential for application in high‐performance supercapacitors.  相似文献   

10.
Compositing amorphous TiO2 with nitrogen‐doped carbon through Ti? N bonding to form an amorphous TiO2/N‐doped carbon hybrid (denoted a‐TiO2/C? N) has been achieved by a two‐step hydrothermal–calcining method with hydrazine hydrate as an inhibitor and nitrogen source. The resultant a‐TiO2/C? N hybrid has a surface area as high as 108 m2 g?1 and, when used as an anode material, exhibits a capacity as high as 290.0 mA h g?1 at a current rate of 1 C and a reversible capacity over 156 mA h g?1 at a current rate of 10 C after 100 cycles; these results are better than those found in most reports on crystalline TiO2. This superior electrochemical performance could be ascribed to a combined effect of several factors, including the amorphous nature, porous structure, high surface area, and N‐doped carbon.  相似文献   

11.
The reduced graphene oxide (RGO)/bisphenol A (BPA) composites were prepared by an adsorption‐reduction method. The composites are characterized by X‐ray diffraction (XRD), UV‐vis, thermogravimetric (TG) analysis, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM). The results confirm that BPA is adsorbed on the basal plane of RGO by π‐π stacking interaction. Furthermore, the electrochemical behaviors were evaluated by cyclic voltammetry, galvanostatic charge/discharge techniques and electrochemical impedance spectroscopy (EIS). The results show that the RGO/BPA nanocomposites exhibit ultrahigh specific capacitance of 466 F·g?1 at a current density of 1 A·g?1, excellent rate capability (more than 81% retention at 10 A·g?1 relative to 1 A·g?1) and superior cycling stability (90% capacitance decay after 4000 cycles). Consequently, the RGO/BPA nanocomposites can be regarded as promising electrode materials for supercapacitor applications.  相似文献   

12.
Porous nitrogen‐doped carbon nanotubes (PNCNTs) with a high specific surface area (1765 m2 g?1) and a large pore volume (1.28 cm3 g?1) have been synthesized from a tubular polypyrrole (T‐PPY). The inner diameter and wall thickness of the PNCNTs are about 55 nm and 22 nm, respectively. This material shows extremely promising properties for both supercapacitors and for encapsulating sulfur as a superior cathode material for high‐performance lithium–sulfur (Li‐S) batteries. At a current density of 0.5 A g?1, PNCNT presents a high specific capacitance of 210 F g?1, as well as excellent cycling stability at a current density of 2 A g?1. When the S/PNCNT composite was tested as the cathode material for Li‐S batteries, the initial discharge capacity was 1341 mAh g?1 at a current rate of 1 C and, even after 50 cycles at the same rate, the high reversible capacity was retained at 933 mAh g?1. The promising electrochemical energy‐storage performance of the PNCNTs can be attributed to their excellent conductivity, large surface area, nitrogen doping, and unique pore‐size distribution.  相似文献   

13.
Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high‐surface‐area hierarchically porous N‐doped carbon microflowers, which were assembled from porous nanosheets by a three‐step route: soft‐template‐assisted self‐assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure‐directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N‐doped carbon microflowers (A‐NCF‐4) have a hierarchically porous structure, high specific surface area (2309 m2 g?1), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm3 g?1). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g?1 were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.  相似文献   

14.
An innovative technique to obtain high‐surface‐area mesostructured carbon (2545 m2 g?1) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10 min) with complete elimination of toxic HF usage. The obtained carbon material (JNC‐1) displays excellent CO2 capture ability (ca. 26.2 wt % at 0 °C under 0.88 bar CO2 pressure), which is twice that of CMK‐3 obtained by the HF etching method (13.0 wt %). JNC‐1 demonstrated higher H2 adsorption capacity (2.8 wt %) compared to CMK‐3 (1.2 wt %) at ?196 °C under 1.0 bar H2 pressure. The bimodal pore architecture of JNC‐1 led to superior supercapacitor performance, with a specific capacitance of 292 F g?1 and 182 F g?1 at a drain rate of 1 A g?1 and 50 A g?1, respectively, in 1 m H2SO4 compared to CMK‐3 and activated carbon.  相似文献   

15.
For the first time, hierarchically porous carbon materials with a sandwich‐like structure are synthesized through a facile and efficient tri‐template approach. The hierarchically porous microstructures consist of abundant macropores and numerous micropores embedded into the crosslinked mesoporous walls. As a result, the obtained carbon material with a unique sandwich‐like structure has a relatively high specific surface (1235 m2 g?1), large pore volume (1.30 cm3 g?1), and appropriate pore size distribution. These merits lead to a comparably high specific capacitance of 274.8 F g?1 at 0.2 A g?1 and satisfying rate performance (87.7 % retention from 1 to 20 A g?1). More importantly, the symmetric supercapacitor with two identical as‐prepared carbon samples shows a superior energy density of 18.47 Wh kg?1 at a power density of 179.9 W kg?1. The asymmetric supercapacitor based on as‐obtained carbon sample and its composite with manganese dioxide (MnO2) can reach up to an energy density of 25.93 Wh kg?1 at a power density of 199.9 W kg?1. Therefore, these unique carbon material open a promising prospect for future development and utilization in the field of energy storage.  相似文献   

16.
Herein we present a simple method for fabricating core–shell mesostructured CuO@C nanocomposites by utilizing humic acid (HA) as a biomass carbon source. The electrochemical performances of CuO@C nanocomposites were evaluated as an electrode material for supercapacitors and lithium‐ion batteries. CuO@C exhibits an excellent capacitance of 207.2 F g?1 at a current density of 1 A g?1 within a potential window of 0–0.46 V in 6 M KOH solution. Significantly, CuO electrode materials achieve remarkable capacitance retentions of approximately 205.8 F g?1 after 1000 cycles of charge/discharge testing. The CuO@C was further applied as an anode material for lithium‐ion batteries, and a high initial capacity of 1143.7 mA h g?1 was achieved at a current density of 0.1 C. This work provides a facile and general approach to synthesize carbon‐based materials for application in large‐scale energy‐storage systems.  相似文献   

17.
A 3D structured composite of carbon nanofibers@MnO2 on copper foil is reported here as a binder free anode of lithium ion batteries, with high capacity, fast charge/discharge rate and good stability. Carbon nanofiber yarns were synthesized directly over copper foil through a floating catalyst method. The growth of carbon nanofiber yarns was significantly enhanced by mechanical polishing of the copper foils, which can be attributed to the increased surface roughness and surface area of the copper foils. MnO2 was then grown over carbon nanofibers through spontaneous reduction of potassium permanganate by the carbon nanofibers. The obtained composites of carbon nanofibers@MnO2 over copper foil were tested as an anode in lithium ion batteries and they show superior electrochemical performance. The initial reversible capacity of carbon nanofibers@MnO2 reaches up to around 998 mAh·g?1 at a rate of 60 mmA·g?1 based on the mass of carbon nanofibers and MnO2. The carbon nanofibers@MnO2 electrodes could deliver a capacity of 630 mAh·g?1 at the beginning and maintain a capacity of 440 mmAh·g?1 after 105 cycles at a rate of 600 mA·g?1. The high initial capacity can be attributed to the presence of porous carbon nanofiber yarns which have good electrical conductivity and the MnO2 thin film which makes the entire materials electrochemically active. The high cyclic stability of carbon nanofibers@MnO2 can be ascribed to the MnO2 thin film which can accommodate the volume expansion and shrinking during charge and discharge and the good contact of carbon nanofibers with MnO2 and copper foil.  相似文献   

18.
Metal oxides have a large storage capacity when employed as anode materials for lithium‐ion batteries (LIBs). However, they often suffer from poor capacity retention due to their low electrical conductivity and huge volume variation during the charge–discharge process. To overcome these limitations, fabrication of metal oxides/carbon hybrids with hollow structures can be expected to further improve their electrochemical properties. Herein, ZnO‐Co3O4 nanocomposites embedded in N‐doped carbon (ZnO‐Co3O4@N‐C) nanocages with hollow dodecahedral shapes have been prepared successfully by the simple carbonizing and oxidizing of metal–organic frameworks (MOFs). Benefiting from the advantages of the structural features, i.e. the conductive N‐doped carbon coating, the porous structure of the nanocages and the synergistic effects of different components, the as‐prepared ZnO‐Co3O4@N‐C not only avoids particle aggregation and nanostructure cracking but also facilitates the transport of ions and electrons. As a result, the resultant ZnO‐Co3O4@N‐C shows a discharge capacity of 2373 mAh g?1 at the first cycle and exhibits a retention capacity of 1305 mAh g?1 even after 300 cycles at 0.1 A g?1. In addition, a reversible capacity of 948 mAh g?1 is obtained at a current density of 2 A g?1, which delivers an excellent high‐rate cycle ability.  相似文献   

19.
Porous nitrogen‐rich carbon (POF‐C‐1000) that was synthesized by using a porous organic framework (POF) as a self‐sacrificing host template in a nanocasting process possessed a high degree of graphitization in an ordered structural arrangement with large domains and well‐ordered arrays of carbon sheets. POF‐C‐1000 exhibits favorable electrocatalytic activity for the oxygen‐reduction reaction (ORR) with a clear positive shift of about 40 mV in the onset potential compared to that of a traditional, commercially available Pt/C catalyst. In addition, irrespective of its moderate surface area (785 m2 g?1), POF‐C‐1000 showed a reasonable H2 adsorption of 1.6 wt % (77 K) and a CO2 uptake of 3.5 mmol g?1 (273 K).  相似文献   

20.
A facile and sustainable procedure for the synthesis of nitrogen‐doped hierarchical porous carbons with a three‐dimensional interconnected framework (NHPC‐3D) was developed. The strategy, based on a colloidal crystal‐templating method, utilizes nitrogenous dopamine as the precursor due to its unique properties, including self‐polymerization under mild alkaline conditions, coating onto various surfaces, a high carbonization yield, and well‐preserved nitrogen doping after heat treatment. The obtained NHPC‐3D possesses a high surface area of 1056 m2 g?1, a large pore volume of 2.56 cm3 g?1, and a high nitrogen content of 8.2 wt %. The NHPC‐3D is implemented as the electrode material of a supercapacitor and exhibits a specific capacitance as high as 252 F g?1 at a current density of 2 A g?1. The device also shows a high capacitance retention of 75.7 % at a higher current density of 20 A g?1 in aqueous electrolyte due to a sufficient surface area for charge accommodation, reversible pseudocapacitance, and minimized ion‐transport resistance, as a result of the advantageous interconnected hierarchical porous texture. These results showcase NHPC‐3D as a promising candidate for electrode materials in supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号