首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In a general Hilbert framework, we consider continuous gradient-like dynamical systems for constrained multiobjective optimization involving nonsmooth convex objective functions. Based on the Yosida regularization of the subdifferential operators involved in the system, we obtain the existence of strong global trajectories. We prove a descent property for each objective function, and the convergence of trajectories to weak Pareto minima. This approach provides a dynamical endogenous weighting of the objective functions, a key property for applications in cooperative games, inverse problems, and numerical multiobjective optimization.  相似文献   

2.
We propose a path following method to find the Pareto optimal solutions of a box-constrained multiobjective optimization problem. Under the assumption that the objective functions are Lipschitz continuously differentiable we prove some necessary conditions for Pareto optimal points and we give a necessary condition for the existence of a feasible point that minimizes all given objective functions at once. We develop a method that looks for the Pareto optimal points as limit points of the trajectories solutions of suitable initial value problems for a system of ordinary differential equations. These trajectories belong to the feasible region and their computation is well suited for a parallel implementation. Moreover the method does not use any scalarization of the multiobjective optimization problem and does not require any ordering information for the components of the vector objective function. We show a numerical experience on some test problems and we apply the method to solve a goal programming problem.  相似文献   

3.
The aim of this paper is to propose a new multiple subgradient descent bundle method for solving unconstrained convex nonsmooth multiobjective optimization problems. Contrary to many existing multiobjective optimization methods, our method treats the objective functions as they are without employing a scalarization in a classical sense. The main idea of this method is to find descent directions for every objective function separately by utilizing the proximal bundle approach, and then trying to form a common descent direction for every objective function. In addition, we prove that the method is convergent and it finds weakly Pareto optimal solutions. Finally, some numerical experiments are considered.  相似文献   

4.
Multiobjective DC optimization problems arise naturally, for example, in data classification and cluster analysis playing a crucial role in data mining. In this paper, we propose a new multiobjective double bundle method designed for nonsmooth multiobjective optimization problems having objective and constraint functions which can be presented as a difference of two convex (DC) functions. The method is of the descent type and it generalizes the ideas of the double bundle method for multiobjective and constrained problems. We utilize the special cutting plane model angled for the DC improvement function such that the convex and the concave behaviour of the function is captured. The method is proved to be finitely convergent to a weakly Pareto stationary point under mild assumptions. Finally, we consider some numerical experiments and compare the solutions produced by our method with the method designed for general nonconvex multiobjective problems. This is done in order to validate the usage of the method aimed specially for DC objectives instead of a general nonconvex method.  相似文献   

5.
In this paper the Pareto efficiency of a uniformly convergent multiobjective optimization sequence is studied. We obtain some relation between the Pareto efficient solutions of a given multiobjective optimization problem and those of its uniformly convergent optimization sequence and also some relation between the weak Pareto efficient solutions of the same optimization problem and those of its uniformly convergent optimization sequence. Besides, under a compact convex assumption for constraints set and a certain convex assumption for both objective and constraint functions, we also get some sufficient and necessary conditions that the limit of solutions of a uniformly convergent multiobjective optimization sequence is the solution of a given multiobjective optimization problem.  相似文献   

6.
In this paper, we consider an extend-valued nonsmooth multiobjective optimization problem of finding weak Pareto optimal solutions. We propose a class of vector-valued generalized viscosity approximation method for solving the problem. Under some conditions, we prove that any sequence generated by this method converges to a weak Pareto optimal solution of the multiobjective optimization problem.  相似文献   

7.
In this paper, we consider the linearly constrained multiobjective minimization, and we propose a new reduced gradient method for solving this problem. Our approach solves iteratively a convex quadratic optimization subproblem to calculate a suitable descent direction for all the objective functions, and then use a bisection algorithm to find an optimal stepsize along this direction. We prove, under natural assumptions, that the proposed algorithm is well-defined and converges globally to Pareto critical points of the problem. Finally, this algorithm is implemented in the MATLAB environment and comparative results of numerical experiments are reported.  相似文献   

8.
Motivated by Markowitz portfolio optimization problems under uncertainty in the problem data, we consider general convex parametric multiobjective optimization problems under data uncertainty. For the first time, this uncertainty is treated by a robust multiobjective formulation in the gist of Ben-Tal and Nemirovski. For this novel formulation, we investigate its relationship to the original multiobjective formulation as well as to its scalarizations. Further, we provide a characterization of the location of the robust Pareto frontier with respect to the corresponding original Pareto frontier and show that standard techniques from multiobjective optimization can be employed to characterize this robust efficient frontier. We illustrate our results based on a standard mean–variance problem.  相似文献   

9.
In this paper, we present a unified approach for studying convex composite multiobjective optimization problems via asymptotic analysis. We characterize the nonemptiness and compactness of the weak Pareto optimal solution sets for a convex composite multiobjective optimization problem. Then, we employ the obtained results to propose a class of proximal-type methods for solving the convex composite multiobjective optimization problem, and carry out their convergence analysis under some mild conditions.  相似文献   

10.
Zhe Chen 《Applicable analysis》2013,92(12):2457-2467
In this article, we investigate the nonemptiness and compactness of the weak Pareto optimal solution set of a multiobjective optimization problem with functional constraints via asymptotic analysis. We then employ the obtained results to derive the necessary and sufficient conditions of the weak Pareto optimal solution set of a parametric multiobjective optimization problem. Our results improve and generalize some known results.  相似文献   

11.
求多目标优化问题Pareto最优解集的方法   总被引:1,自引:0,他引:1  
主要讨论了无约束多目标优化问题Pareto最优解集的求解方法,其中问题的目标函数是C1连续函数.给出了Pareto最优解集的一个充要条件,定义了α强有效解,并结合区间分析的方法,建立了求解无约束多目标优化问题Pareto最优解集的区间算法,理论分析和数值结果均表明该算法是可靠和有效的.  相似文献   

12.
条件风险值问题是研究信用风险最优化的一种新的模型,本文研究了一类多目标条件风险值问题等价定理,我们引入了多个损失函数在对应的置信水平下关于一个证券组合的α-VaR损失值(最小信用风险值)和α-CVaR损失值(最小信用风险值对应的条件期望损失值或条件风险价值度量)概念,为了求得α-CVaR损失值下的弱:Pareto有效解,我们证明了它等价于求解另一个多目标规划问题的Pateto有效解,这样使得问题的求解变得简单.  相似文献   

13.
This paper proposes a new generalized homotopy algorithm for the solution of multiobjective optimization problems with equality constraints. We consider the set of Pareto candidates as a differentiable manifold and construct a local chart which is fitted to the local geometry of this Pareto manifold. New Pareto candidates are generated by evaluating the local chart numerically. The method is capable of solving multiobjective optimization problems with an arbitrary number k of objectives, makes it possible to generate all types of Pareto optimal solutions, and is able to produce a homogeneous discretization of the Pareto set. The paper gives a necessary and sufficient condition for the set of Pareto candidates to form a (k-1)-dimensional differentiable manifold, provides the numerical details of the proposed algorithm, and applies the method to two multiobjective sample problems.  相似文献   

14.
This paper provides some new results on approximate Pareto solutions of a multiobjective optimization problem involving nonsmooth functions. We establish Fritz-John type necessary conditions and sufficient conditions for approximate Pareto solutions of such a problem. As a consequence, we obtain Fritz-John type necessary conditions for (weakly) Pareto solutions of the considered problem by exploiting the corresponding results of the approximate Pareto solutions. In addition, we state a dual problem formulated in an approximate form to the reference problem and explore duality relations between them.  相似文献   

15.
Evolutionary algorithms have shown some success in solving multiobjective optimization problems. The methods of fitness assignment are mainly based on the information about the dominance relation between individuals. We propose a Pareto fitness genetic algorithm (PFGA) in which we introduce a modified ranking procedure and a promising way of sharing; a new fitness function based on the rank of the individual and its density value is designed. This is considered as our main contribution. The performance of our algorithm is evaluated on six multiobjective benchmarks with different Pareto front features. Computational results (quality of the approximation of the Pareto optimal set and the number of fitness function evaluations) proving its efficiency are reported.  相似文献   

16.
This paper proposes a new algorithm to solve nonsmooth multiobjective programming. The algorithm is a descent direction method to obtain the critical point (a necessary condition for Pareto optimality). We analyze both global and local convergence results under some assumptions. Numerical tests are also given.  相似文献   

17.
In this paper, we introduce a vector-valued Tikhonov-type regularization algorithm for an extended-valued multiobjective optimization problem. Under some mild conditions, we prove that any sequence generated by this algorithm converges to a weak Pareto optimal solution of the multiobjective optimization problem. Our results improve and generalize some known results.  相似文献   

18.
《Optimization》2012,61(4):413-430
This article studies new applications of advanced methods of variational analysis and generalized differentiation to constrained problems of multiobjective/vector optimization. We pay most attention to general notions of optimal solutions for multiobjective problems that are induced by geometric concepts of extremality in variational analysis, while covering various notions of Pareto and other types of optimality/efficiency conventional in multiobjective optimization. Based on the extremal principles in variational analysis and on appropriate tools of generalized differentiation with well-developed calculus rules, we derive necessary optimality conditions for broad classes of constrained multiobjective problems in the framework of infinite-dimensional spaces. Applications of variational techniques in infinite dimensions require certain ‘normal compactness’ properties of sets and set-valued mappings, which play a crucial role in deriving the main results of this article.  相似文献   

19.
Extending the notion of global search to multiobjective optimization is far than straightforward, mainly for the reason that one almost always has to deal with infinite Pareto optima and correspondingly infinite optimal values. Adopting Stephen Smale’s global analysis framework, we highlight the geometrical features of the set of Pareto optima and we are led to consistent notions of global convergence. We formulate then a multiobjective version of a celebrated result by Stephens and Baritompa, about the necessity of generating everywhere dense sample sequences, and describe a globally convergent algorithm in case the Lipschitz constant of the determinant of the Jacobian is known.  相似文献   

20.
Multiobjective optimization has a large number of real-life applications. Under this motivation, in this paper, we present a new method for solving multiobjective optimization problems with both linear constraints and bound constraints on the variables. This method extends, to the multiobjective setting, the classical reduced gradient method for scalar-valued optimization. The proposed algorithm generates a feasible descent direction by solving an appropriate quadratic subproblem, without the use of any scalarization approaches. We prove that the sequence generated by the algorithm converges to Pareto-critical points of the problem. We also present some numerical results to show the efficiency of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号