首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conical nanobump arrays were generated on gold thin film processed by interfering femtosecond laser. The transition of the height and diameter as functions of fluence and pulse width was investigated. When the fluence was 87 mJ/cm2, the height and diameter were not so different at 350 fs or shorter pulse width. They decreased at longer pulse width, and no bump could be generated over 1.6 ps. The results suggest the decrease of size is due to the diffusion of electron to not-excited region, and due to heat conduction to not heated region or substrate, or change of absorbance of laser. At long pulse width of 2.4 ps and relatively higher fluence of 190 mJ/cm2, nanobump had liquid-like structure as a stop motion of a water drop.  相似文献   

2.
We have developed a patterning procedure based on selective ablation using interference patterns with ns-laser pulses to fabricate periodic arrays on large areas of poly(3,4-ethylene dioxythiophene)-poly(4-styrene sulfonic acid) (PEDOT-PSS) thin films over a metallic gold–palladium layer. Single pulse laser-ablation experiments were performed to study the ablation characteristics of the thin films as a function of the film thickness. The ablation threshold fluence of the PEDOT-PSS films was found to be dependent on thickness with values ranging from 43 mJ/cm2 to 252 mJ/cm2. Additionally, fluences at which the PEDOT-PSS films could be ablated without inducing damage in the underlying metallic films were observed (128 mJ/cm2 and 402 mJ/cm2 for film thicknesses of 70 nm and 825 nm, respectively). Linear periodic arrays with line spacings of 7.82 μm and 13.50 μm were also fabricated. The surface topography of these arrays was analyzed using scanning electron and atomic force microscopy. For thicker polymeric layers, several peeled sub-layers of the conjugated polymer with average thicknesses of about 165–185 nm were observed in the ablation experiments. The size and scale of structures produced by this technique could be suitable for several biomedical applications and devices in which controlling cell adhesion, promoting cell alignment, or improving biocompatibility are important.  相似文献   

3.
Single-shot ablation threshold for thin chromium film was studied using 266 nm, femtosecond laser pulses. Chromium is a useful material in the nanotechnology industry and information on ablation threshold using UV femtosecond pulses would help in precise micromachining of the material. The ablation threshold was determined by measuring the ablation crater diameters as a function of incident laser pulse energy. Absorption of 266 nm light on the chromium film was also measured under our experimental conditions, and the absorbed energy single-shot ablation threshold fluence was \(46 \pm 5\)  mJ/cm2. The experimental ablation threshold fluence value was compared to time-dependent heat flow calculations based on the two temperature model for ultrafast laser pulses. The model predicts a value of 31.6 mJ/cm2 which is qualitatively consistent with the experimentally obtained value, given the simplicity of the model.  相似文献   

4.
Quasi-simultaneous laser action in the UV (0.337 μm) and the IR (10.6 μm) was observed from a pulsed laser with a sliding discharge plasma cathode. The laser operates at atmospheric pressure, with a gas mixture of CO2/N2/He, at a 0.26/0.50/4.0 lmin−1 flow rate. Output energies of 30 mJ in the IR and 0.35 mJ in the UV were obtained, from a laser discharge volume of 38.0×1.0×2.8 cm3. The optimum gas mixtures have been determined and the temporal behavior of the discharge parameters, the performance characteristics of the laser and the beam spatial distributions were investigated.  相似文献   

5.
TiO2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm2. Microcracks at medium laser fluence of 1000 mJ/cm2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO2 film might be used for adjustable filters.  相似文献   

6.
A SnO2 film has been prepared by an excimer laser metal organic deposition (ELMOD) process using an XeCl laser. The effects of the laser fluence, shot number, and the pretreatment temperature of the Sn acetylacetonate (Sn-acac) on the crystallization of the SnO2 film were investigated by X-ray diffraction and infrared spectroscopy. When the MO spin-coated film preheated at room temperature on a Si substrate was irradiated by the laser at a fluence of 100 mJ/cm2 and at a repetition rate of 10 Hz for 5 min, a crystallized SnO2 film was successfully obtained without heat treatment. At a fluence of 260 mJ/cm2, the highest crystalline film was formed. On the other hand, when the amorphous SnO2 film was irradiated by the laser at 260 mJ/cm2, the crystallinity of the SnO2 film was improved. SnO2 films were also prepared by conventional thermal MOD in a temperature range from 300 to 900 °C. The crystallinity of the SnO2 films prepared by the ELMOD process at room temperature was higher than that of the films prepared by heating at 900 °C for 60 min. PACS 81.15.Fg; 81.15.-z; 81.16.Mk; 82.50.Hp; 73.61.Le  相似文献   

7.
The single-shot ablation threshold and incubation coefficient of copper were investigated using an amplified near-infrared, femtosecond Ti:sapphire laser. To date, the near-infrared femtosecond ablation threshold of copper has been reported in the range of several hundred millijoules per cm2 based primarily on multiple shot ablation studies. A careful study of the single shot ablation threshold for copper was carried out yielding an incident single-shot ablation threshold of (1.06±0.12) J/cm2 for a clean copper foil surface. This was determined by measuring the diameters of the ablation spots as a function of the laser pulse energy using scanning electron microscopy for spatially Gaussian laser spots. When multiple shots were taken on the same spot, a reduction in ablation threshold was observed, consistent with a multiple shot incubation coefficient of 0.76±0.02. Similar experiments on 250 nm and 500 nm copper thin films sputtered on a silicon substrate demonstrated that scaling the threshold values with the absorbance of energy at the surface yields a consistent absorbed fluence threshold for copper of (59±10) mJ/cm2. This absorbed threshold value is consistent with the expected value from a two-temperature model for the heating of copper with an electron-lattice coupling constant of g=1017 Wm-3 K-1. Single-shot rippling of the surface in the threshold ablation intensity regime was also observed for the foil target but not for the smooth thin film target. PACS 61.80.Ba; 61.82.Bg  相似文献   

8.
The single-layer and multilayer Sb-rich AgInSbTe films were irradiated by a single femtosecond laser pulse with the duration of 120 fs. The morphological feature resulting from the laser irradiation have been investigated by scanning electron microscopy and atom force microscopy. For the single-layer film, the center of the irradiated spot is a dark depression and the border is a bright protrusion; however, for the multilayer film, the center morphology changes from a depression to a protrusion as the energy increases. The crystallization threshold fluence of the single-layer and the multilayer films is 46.36 mJ/cm2, 63.74 mJ/cm2, respectively. PACS 79.20.Ds; 78.55.Qr; 78.66.Jg; 68.37.Ef; 68.37.Ps  相似文献   

9.
A deep ultraviolet femtosecond laser operating at wavelength 258 nm was demonstrated to be effective in trimming fiber Bragg gratings in telecommunication fibers. A smooth tunable resonance wavelength shift of up to 0.52 nm has been observed, corresponding to a refractive index change of ∼5 × 10−4 after an accumulated laser fluence of 63.3 kJ/cm2 at a single pulse fluence of 124 mJ/cm2. The ultrafast laser enhancement of ultraviolet photosensitivity response and modification of anisotropic index profile in silica fiber is a powerful technique to precise control of the performance of fiber Bragg grating devices for applications in optical filtering and polarization mode dispersion management.  相似文献   

10.
Laser micromachining on 1000 nm-thick gold film using femtosecond laser has been studied. The laser pulses that are used for this study are 400 nm in central wavelength, 150 fs in pulse duration, and the repetition rate is 1 kHz. Plano-concave lens with a focal length of 19 mm focuses the laser beam into a spot of 3 μm (1/e2 diameter). The sample was translated at a linear speed of 400 μm/s during machining. Grooves were cut on gold thin film with laser pulses of various energies. The ablation depths were measured and plotted. There are two ablation regimes. In the first regime, the cutting is very shallow and the edges are free of molten material. While in the second regime, molten material appears and the cutting edges are contaminated. The results suggest that clean and precise microstructuring can be achieved with femtosecond pulsed laser by controlling the pulse energy in the first ablation regime.  相似文献   

11.
Thin film laser micromachining has been utilized for repairing semiconductor masks, creating solar cells and fabricating MEMS devices. A unique high repetition rate femtosecond fiber laser system capable of variable repetition rates from 200 KHz to 25 MHz along with helium gas assist was used to study the effect of pulse repetition rate and pulse energy on femtosecond laser machining of gold-coated silicon wafer. It was seen that high repetition rates lead to smaller craters with uniform line width. Craters created at 13 MHz pulse repetition rate with 2.042 J/cm2 beam energy fluence measured 110 nm in width and had a heat affected zone of 0.79 μm. It was found that pulse repetition rate only played a significant role in the size of the heat affected zone in the lower pulse energy ranges. In the future, a 1 W laser system will be acquired to find the optimal repetition rate that would create the minimal feature size with the least heat affected zone. Using this kind of setup along with techniques such as radial polarization and a different gas assist may enable us to create sub 100 nm feature size with good quality.  相似文献   

12.
We combine the deposition of Hydrogenated amorphous Silicon (a-Si:H) by rf glow discharge with XeCl-excimer laser irradiation of the growing surface in order to obtain different kinds of silicon films in the same deposition system. In-situ UV-visible ellipsometry allows us to measure the optical properties of the films as the laser fluence is increased from 0 up to 180 mJ/cm2 in separate depositions. For fixed glow-discharge conditions and a substrate temperature of 250° C we observe dramatic changes in the film structure as the laser fluence is increased. With respect to a reference a-Si:H film (no laser irradiation) we observe at low laser fluences (15–60 mJ/cm2) that the film remains amorphous but demonstrates enchanced surface roughness and bulk porosity. At intermediate fluences (80–165 m/Jcm2), we obtain an amorphous film with an enhanced density with respect to the reference film. Finally, at high fluences (165–180 mJ/cm2), we obtain microcrystalline films. The in-situ ellipsometry measurements are complemented by ex-situ measurements of the dark conductivity, X-ray diffraction, and Elastic Recoil Detection Analysis (ERDA). Simulation of the temperature profiles for different film thicknesses and for three laser fluences indicates that crystallization occurs if the surface temperature reaches the melting point of a-Si:H ( 1420 K). The effects of laser treatment on the film properties are discussed by taking into account the photonic and thermal effects of laser irradiation.Presented at LASERION 93, Munich, June 21–23, 1993  相似文献   

13.
Surface relief gratings (SRG) and self-organized nano-structures induced by laser light at 157 nm on the fluoropolymer poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA), films were obtained under well-controlled light exposure conditions. Regular and semi-regular spaced self-organized grating-like structures were created on polymeric films for ∼7.5-100 mJ/cm2 laser energy fluence. For lower laser fluence, the surface morphology of light exposed/non-exposed areas exhibited irregular-like structure morphologies, while polymer surface irradiation with energy fluence higher than 150 mJ/cm2 causes progressively fading out of the regular patterns. Under the specific experimental conditions, the SRG and self-organization patterning have their origin in the development of a surface thermal instability (Rayleigh's instability), which is resolved itself into regular patterns on the surface of the fluoropolymer film. The thermal instability is due to the explosive polymer surface photo-dissociation at 157 nm and the build up of longitudinal and periodic surface stress, which eventually create the SRG and the self-assembled structures on the polymer.  相似文献   

14.
High throughput and low cost fabrication techniques in the sub-micrometer scale are attractive for the industry. Laser interference lithography (LIL) is a promising technique that can produce one, two and three-dimensional periodical patterns over large areas. In this work, two- and four-beam laser interference lithography systems are implemented to produce respectively one- and two-dimensional periodical patterns. A high-power single pulse of ∼8 ns is used as exposure process. The optimum exposure dose for a good feature patterning in a 600 nm layer of AZ-1505 photoresist deposited on silicon wafers is studied. The best aspect ratio is found for a laser fluence of 20 mJ/cm2. A method to control the width of the sub-micrometer structures based on controlling the resist thickness and the laser fluence is proposed.  相似文献   

15.
The V-T/R relaxation time of CDF3 was measured studying the laser-induced infrared fluorescence emitted by vibrationally excited CDF3. Following excitation by the 10R(12) line of a TEA CO2 laser infrared fluorescence has been detected without spectral resolution in the 1100–700 cm–1 range. A decay rate of 28.8 ms–1 Torr–1 was obtained for pure CDF3 when it is excited with a fluence of 390 mJ/cm2. Measurements have also been made in the presence of different bath gases (He, Ne, Ar, Xe, and CHF3).  相似文献   

16.
We report the formation of directionally ordered nano-scale surface domains on the +z face of undoped congruent lithium niobate single crystals by using UV illumination through a phase mask of sub-micron periodicity with an energy fluence between ∼90 mJ/cm2 and 150 mJ/cm2 at λ = 266 nm. We clearly show here that the UV-induced surface ferroelectric domains only nucleate at and propagate along maxima of laser intensity. Although the domain line separation varies and is greater than 2 μm for this set of experimental conditions, this enables a degree of control over the all-optical poling process.  相似文献   

17.
Laser dry etching by a laser driven direct writing apparatus has been extensively used for the micro- and nano-patterning on the solid surface. The purpose of this study is to pattern the PEDOT:PSS thin film coated on the soda-lime glass substrates by a nano-second pulsed ultraviolet laser processing system. The patterned PEDOT:PSS film structure provides the electrical isolation and prevents the electrical contact from each region for capacitive touch screens. The surface morphology, geometric dimension, and edge quality of ablated area after the variety of laser patternings were measured by a 3D confocal laser scanning microscope. After the single pulse laser irradiation, the ablation threshold of the PEDOT:PSS film conducted by the nano-second pulsed UV laser was determined to be 0.135±0.003 J/cm2. The single pulse laser interacted region and the ablated line depth increased with increasing the laser fluence. Moreover, the inner line width of ablated PEDOT:PSS films along the patterned line path increased with increasing the laser fluence but the shoulder width increased with decreasing fluence, respectively. The clean, smooth, and straight ablated edges were accomplished after the electrode patterning with the laser fluence of 1.7 J/cm2 and 90 % overlapping rate.  相似文献   

18.
La0.8Sr0.2MnO3 films were prepared on SrTiO3 (STO) and LaAlO3 (LAO) substrates using excimer laser-assisted metal organic deposition (ELAMOD). For the LAO substrate, no epitaxial La0.8Sr0.2MnO3 film was obtained by laser irradiation in the fluence range from 60 to 110 mJ/cm2 with heating at 500 °C. On the other hand, an epitaxial La0.8Sr0.2MnO3 film on the STO substrate was formed by laser irradiation in the fluence range from 60 to 100 mJ/cm2 with heating at 500 °C. To optimize the electrical properties for an IR sensor, the effects of the laser fluence, the irradiation time and the film thickness on the temperature dependence of the resistance and temperature coefficient of resistance (TCR: defined as 1/R·(dR/dT)) of the LSMO films were investigated. An LSMO film on the STO substrate that showed the maximum TCR of 3.9% at 265 K was obtained by the ELAMOD process using the KrF laser.  相似文献   

19.
Measurements of multiphoton absorption of 16 µm Raman-laser radiation in supercooled238UF6 at 90 K were performed by using a pulsed Laval nozzle with an optical path length of 50 cm. The laser fluence was varied between 50 and 500 mJ/cm2 for four frequencies in the range from 625 to 629 cm–1. The energy absorbed by238UF6 molecules was investigated as a function of laser frequency or fluence, and highly accurate results were obtained with the use of the nozzle whose optical path length is much greater than that of nozzles used before. The results indicated that the absorption cross section at the peak absorption frequency (627.8cm–1) was proportional to the –1/3 power of the fluence.  相似文献   

20.
Lithographical laser ablation using femtosecond laser   总被引:1,自引:0,他引:1  
Lithographical laser ablation was demonstrated using a femtosecond laser with a lithographical optical system. In this method, a femtosecond laser beam passes through a mask and the pattern is imaged on a film by a coherent optical system. As a result, the film is lithographically ablated, and a micron-sized pattern can be generated in a single shot. The resolution of generation was 13 m, and the narrowest width of a generated line was about 4 m. Moreover, the system was applied to transmission gratings as masks, and nano-sized periodic structures such as nano-sized hole matrices and nano-meshes were generated in a single shot. PACS 52.38.Mf; 42.25.Hz; 42.82.Cr; 81.16.-c  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号