首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
生物质焦脱硫性能实验研究   总被引:11,自引:0,他引:11  
对玉米秆、树叶、棉花秆和稻壳等四种生物质在不同条件下热解制备的焦进行了脱硫性能实验。结果显示,在所研究的四种生物质中,玉米秆焦的脱硫性能最佳,而稻壳焦的脱硫性能最差。热解温度是影响生物质焦脱硫性能的一个重要因素,随热解温度从400℃到600℃,焦的脱硫效率增加,但热解温度进一步增加到850℃时,焦的脱硫效率降低。热解速度亦影响焦的脱硫性能。快速热解制得的焦的脱硫效率比慢速热解的高。随烟气温度的升高,脱硫效率表现出减少的趋势。  相似文献   

2.
活性炭的比表面积、孔径及分布是影响液氦低温吸附泵抽氢、氦性能的关键因素。为了确定制作液氦低温吸附泵的吸附剂,选取了C1、C2、C3、C4四种椰壳活性炭,用比表面积及孔径分析仪测定了其等温吸附性能,并对实验数据进行了针对性分析,获得了各活性炭的比表面积、微孔比表面积份额、不同孔径所对应的孔容等性能数据。结果表明,四种活性炭中C2最适于做为抽氢、氦的液氦低温吸附泵的吸附剂。  相似文献   

3.
在酸含量不同的原材料中,通过爆轰的方法制备纳米石墨粉,并利用BET方程以及BJ H方法对所得纳米石墨粉进行比表面积和孔径分布分析。分析结果表明,所得爆轰产物中有的比表面积大致为天然鳞片石墨的5.3~9.2倍,而且随酸含量的增大逐渐增大,产物的等温线中存在吸附滞后现象。其中,增大的比表面积主要由分布在3 nm至7 nm之间的孔引起的,而且在爆轰后,孔径4 nm左右的孔,其数量达到最大值。通过对纳米石墨粉的研究,分析了酸在爆轰过程中的积极作用,并为纳米石墨粉的进一步应用提供了结构信息。  相似文献   

4.
《工程热物理学报》2021,42(10):2681-2685
以玉米秸秆为原料,ZnCl_2作为活化剂,FeCl_3作为石墨催化剂前驱体,通过同步活化石墨化的方法制备出多孔石墨化生物炭。利用亚甲基蓝吸附试验、N_2吸附-脱附、扫描电子显微镜对制备的多孔石墨化生物炭的吸附性能及生物炭表面微观结构、形貌特征进行了分析。实验结果表明当炭化温度为1000?C,浸渍比1:1、FeCl_3溶液用量为160 m L时制得的多孔石墨化生物炭吸附性最佳。温度升高会造成生物质炭内孔隙塌陷,从而使得平均孔径增大,比表面积下降,但是可以提高ZnCl_2造孔能力;浸渍比提高时,Zn~(2+)浓度的增加一方面会增强造孔能力,另一方面也会造成平均孔径增加,微孔数减少,限制整体的吸附能力;FeCl_3在低浓度下制备得到的生物质炭层状结构较少,影响材料的吸附性能。  相似文献   

5.
酸洗处理对生物质炭表面吸附特性及光谱特性的影响   总被引:1,自引:0,他引:1  
生物质炭表面灰分的存在会严重影响生物质炭的表面结构特性及吸附能力。采用HCl-HF对400和600 ℃两种温度制备的玉米秸秆生物质炭进行酸洗处理,去除生物质炭表面的灰分。通过对比酸洗前后玉米秸秆生物质炭的元素含量、比表面积、孔径分布、红外光谱分析图和吸附平衡试验结果探究酸洗处理对生物质炭表面吸附特性和光谱特性的影响。结果表明:酸洗处理能有效去除生物质炭表面存在的无机盐、焦油等一系列副产物,显著改变生物质炭的表面结构特性,提高生物质炭的吸附性能。(1)酸洗后生物质炭的碳含量相对增加,疏水性及芳香官能团含量增加,极性降低;(2)酸洗处理显著增加了生物质炭的比表面积,处理后炭比表面积分别增加了3.46倍和6.75倍;酸洗还显著提高了生物质炭的孔容及介孔含量,从而大大增加了生物质炭的吸附能力;(3)两种生物质炭酸洗前后的红外光谱上关键官能团峰强差异显著,尤其在3 398~3 447,2 924~3 056,1 378~1 439 cm-1范围内,酸洗后生物质炭的振动峰强度显著减小,表明生物质炭在酸洗后其表面脂肪结构和羟基减少。(4)酸洗前后的吸附试验表明,酸洗处理能够去除炭表面的灰分,增加生物质炭的吸附位点,进而提高其对2,4-D的吸附量。  相似文献   

6.
 在酸含量不同的原材料中,通过爆轰的方法制备纳米石墨粉,并利用BET方程以及BJH方法对所得纳米石墨粉进行比表面积和孔径分布分析。分析结果表明,所得爆轰产物中有的比表面积大致为天然鳞片石墨的5.3~9.2倍,而且随酸含量的增大逐渐增大,产物的等温线中存在吸附滞后现象。其中,增大的比表面积主要由分布在3 nm至7 nm之间的孔引起的,而且在爆轰后,孔径4 nm左右的孔,其数量达到最大值。通过对纳米石墨粉的研究,分析了酸在爆轰过程中的积极作用,并为纳米石墨粉的进一步应用提供了结构信息。  相似文献   

7.
应用同步辐射小角x射线散射方法研究了由不同城市固体垃圾制备而成的活性炭的孔结构-结果发现利用木类、纸张、塑料这三类典型垃圾组分的热解残余物为原料制备中孔发达的活性炭是可行的-活性炭的形态和结构取决于垃圾热解残余物的组分和热解程度等因素- 关键词: 小角x射线散射 活性炭 分形维数 平均孔径  相似文献   

8.
"应用溶剂蒸发自组装的方法合成了具有蠕虫状孔道的介孔二氧化钛粉末和薄膜.考察了不同焙烧温度对材料介孔结构和光催化性能的影响.乙醛光催化降解实验用来表征不同焙烧温度下介孔材料的光催化性能.结果表明实验中合成的介孔二氧化钛材料的光催化活性明显高于颗粒二氧化钛(Degussa P25).其中400 oC焙烧的样品具有平均孔径为6.0 nm的窄的孔径分布和117 m2/g的大的比表面积.通过对光催化活性结果的分析,发现介孔二氧化钛的活性主要受其比表面积和结晶性的共同影响.对介孔二氧化钛薄膜材料进行了同样的光催化表  相似文献   

9.
稻壳热解的动力学模拟   总被引:2,自引:0,他引:2  
生物质热解过程的动力学行为研究对于热化学转化过程机理的掌握和热化学转化技术的开发具有重要意义.本文采用Miller模型对稻壳在低升温速率下的热解进行了动力学模拟,并利用热重分析实验结果对模拟过程的有效性进行了对比验证.模拟计算结果显示气体百分含量在650~780K范围内随温度升高迅速增加,炭含量在500~680K之间随温度升高迅速下降,焦油含量随着温度升高在650K左右达到最高值.同时升温速率的提高可以抑制炭的生成,增加气体和焦油最大产量,在100K/min的升温速率下,气体产量在780K达到最大56.3%,焦油产量在678K左右达到最大26.8%.  相似文献   

10.
易红伟  李英才  樊超 《光子学报》2007,36(11):2062-2065
对光学稀疏孔径子孔径空间分布结构与系统成像特性的基本关系进行了讨论.提出了一种新的子孔径分布结构——等边六孔径结构并给出了该结构的具体分布形式和光瞳函数.对等边六孔径结构的成像特性进行分析,把它与MMT型和Golay6型六孔径结构的调制传递函数进行了仿真实验和比较.  相似文献   

11.
热解温度对酚醛树脂焦的微观结构和还原NO反应性的影响   总被引:1,自引:0,他引:1  
利用傅立叶变换红外光谱(FTIR)、X射线衍射(XRD)和Raman光谱研究了热解温度(500~900℃)对酚醛树脂焦炭微观结构的影响.使用热重分析仪(TGA)研究了酚醛树脂焦还原NO的反应性.结果表明,随着热解温度升高,苯环、酚羟基、脂肪亚甲基等官能团含量降低.衍射实验表明存在(002)峰、(10)峰和(11)峰.随着热解温度升高,焦炭微晶尺寸增大,微晶结构逐渐趋向有序.酚醛树脂焦的Raman光谱分析与XRD分析存在较好的关联性.反应性实验表明焦炭还原NO的反应性没有随热解温度呈现规律性的变化.  相似文献   

12.
Formation of NO initiated by heterogeneous fixation of N2 during pyrolysis is investigated experimentally and theoretically. The experiments were conducted with beech wood as well as with the pure biomass components cellulose, xylan, and lignin. The NO formation during char oxidation was recorded as function of pyrolysis atmosphere (N2 or Ar), pyrolysis temperature (700–1050 °C), and oxidizing atmosphere (O2 in N2 or Ar). The results confirm earlier reports that biomass char may be enriched in N during pyrolysis at 900 °C and above. The N-uptake involves re-capture of N-volatiles as well as uptake of N2. During char oxidation, the captured N is partly oxidized to NO, resulting in increased NO formation. The NO yield from oxidation of beech wood char made in N2 increases with pyrolysis temperature, and is about a factor of two higher at 1050 °C than the corresponding yield from chars made in Ar. The experiments with pure materials show that the lignin char has the strongest ability to form NO from uptake of N2, while xylan char forms only small amounts of NO from N2. Density Functional Theory (DFT) calculations on model chars have revealed a number of chemisorption sites for N2, many of which are weakly bound and therefore expected to have a short half-life at the higher pyrolysis temperatures. However, the chemisorption of N2 across a single ring of the armchair surface was found to have an activation energy of 344 ± 30 kJ mol−1 and form a stable, exothermic product with cyano groups. This demonstrates that at least one channel exists for the high-temperature incorporation of N2 into a char which could give rise to the observed increase in NO release in subsequent char oxidation.  相似文献   

13.
This paper reports char formation and inherent inorganic transformation during rapid pyrolysis of various biomass model components under simulated pulverized fuel (PF) conditions at 1300 °C. A drop-tube furnace with a novel double-tube configuration was deployed to achieve direct determination of char yield. The results show that rapid pyrolysis of xylan and water-washed lignin (W-L) under the conditions results in char yields of 3.4 wt.% and 12.6 wt.%, respectively, while no char was founded during rapid pyrolysis of water-washed cellulose (W-C). After loading K2CO3 into the W-C (i.e. KW-C) and W-L (i.e. KW-L), the char yields increase to 2.1 wt.% and 15.6 wt.%, respectively. The retentions of Na and S are low in chars after pyrolysis. After rapid pyrolysis, W-L and KW-L chars have higher retentions of AAEM species than xylan, W-C and KW-C chars. Micromorphology analysis shows char particles formed after rapid pyrolysis of all biomass components have a cenospheric structure and a rough surface with many bubbles and pores, demonstrating strong melting processes. For xylan and KW-L, the abundant inorganics accelerate char formation with swelling and reduce the extent of particle shrinkage, resulting in char particles with apparent sizes bigger than the parent feedstock particles. Oppositely, for KW-C and W-L that have low contents of inorganic species, the pyrolyzing particles experience significant shrinkage, resulting in formed char particles with apparent sizes that are much smaller than feedstock particles.  相似文献   

14.
生物质在闪速加热条件下的挥发特性研究   总被引:3,自引:0,他引:3  
生物质快速热裂解技术是实现生物质液化的重要手段。研究在闪速加热条件下(达到104K/s)生物质的热挥发特性对于热裂解装置的设计非常重要。在等离子体加热的层流炉上对于几种典型的生物质材料,包括玉米秸秆、麦秸、稻壳、椰子壳等,进行了实验研究,获得了它们热挥发的活化能、反应频率因子等。研究发现,在闪速加热条件下,生物质热挥发的动力学参数与升温速率无关。  相似文献   

15.
This work investigated the combustion characteristics of single pulverized biomass-derived char particles. The char particles, in the size range 224–250 µm, were prepared in a drop tube furnace at pyrolysis temperatures of 1273 or 1473 K from four types of biomass particles – wheat straw, grape pomace, kiwi branches and rice husk. Subsequently, the char particles were injected upward into a confined region of hot combustion products produced by flat flames stabilized on a McKenna burner, with mean temperatures of 1460, 1580 and 1670 K and mean O2 concentrations of 4.5, 6.5 and 8.5 vol%. The data reported include particle temperature, obtained using a two-color pyrometry technique, and potassium release rate, measured using a laser-induced photofragmentation fluorescence imaging technique. In addition, particle ignition delay time and burning time, obtained from the temporal evolution of the thermal radiation intensity of the burning char particles, are also reported. The results indicated that ignition of the char particles occurs simultaneously with the starting of the potassium release, then the particle burning intensity increases rapidly until it reaches a maximum, after which both the particle temperature and the potassium release rate remain approximately constant until the end of the char oxidation process. The char ignition process is temperature controlled, and the char oxidation process is oxygen diffusion controlled, with the total potassium release being independent of the oxygen concentration and the temperature of the combustion products. The combustion behavior of the chars studied is more affected by the char type than by the conditions used to prepare them.  相似文献   

16.
Biomass energy is an important renewable resource, and thermochemical conversion, including pyrolysis and combustion, is one of the main methods of biomass energy utilization. In industrial reactors, the biomass particles will experience a fast heating (∼1000 °C/min) process during pyrolysis. The particle size of biomass applied in industry has a wide range (from millimeter to centimeter scale). The study of the reaction characteristics of biomass pyrolysis and combustion is helpful for optimizing furnace design and working condition selection. In this research, the combustion of centimeter-scale pine char was studied with a newly built fast-heating Macro Thermal Gravimetric Analyzer (Macro TGA). This Macro TGA is able to conduct the pyrolysis and combustion of large biomass samples (up to 40 mm) with a fast heating rate (∼1000 °C/min), which is able to reflect the working conditions in industrial-scale reactors such as grate furnaces and dual fluidized beds. This Macro TGA can measure the online sample weight, temperature and sample size simultaneously during pyrolysis and combustion experiments. The combustion characteristics of different sizes of pine chars were investigated at various temperatures and oxygen concentrations. A zero-dimensional model was established to predict the sample weight loss, temperature change and sample shrinkage during the pine char combustion process. Three kinetic parameters α, A and E were applied in the model, and the values of the kinetic parameters were optimized by a genetic algorithm. The model prediction and experimental results are consistent with each other. Compared with previous studies, this study developed a new experimental method to measure the reaction characteristics (including sample weight, temperature and size) of centimeter-scale biomass under similar pyrolysis and combustion reaction conditions compared to industrial reactors, and a zero-dimensional model was established to describe the pine char combustion process.  相似文献   

17.
Characterization of high heating rate chars of biomass fuels   总被引:1,自引:0,他引:1  
Data on biomass chars obtained under conditions similar to those of practical applications (high heating rate and low residence time) are required for co-combustion and gasification plants. A methodological procedure is developed and applied to two biomass fuels (cacao shells and olive cake) for producing high heating rate chars and characterizing their reactivity and morphology after the first steps of devolatilization. Different chars are produced in a drop tube reactor (rapid pyrolysis) by varying the nominal temperature and the residence time. Oxidation in air is performed to compare typical temperatures and kinetic parameters and evaluate the effect of the operating conditions on char reactivity. A detailed SEM analysis allows to assess the structural variations during the pyrolysis and detect the main phenomena (softening, swelling, melting, formation of bubbles). A quantitative morphological study is also performed to provide size and shape (important for biomasses) distributions of the parent fuel and the chars. These data are more significant than average values in advanced model to correctly simulate the fluid dynamic behaviour of each dimensional class of particles in large scale furnaces and gasifiers and predict a more reliable residence time of the particles.  相似文献   

18.
本文采用变升温速率煅烧和改变煅烧温度探索孔隙形成的特点,同时利用热重分析进行硫化反应,分析煅烧产物的钙转化率,结果表明升温速率和煅烧温度对孔隙特性有重要影响,此外硫化反应对孔径分布有特定要求。  相似文献   

19.
采用沉降炉快速热解和管式炉慢速热解的方法制得两种煤焦,通过环境扫描电镜(ESEM)和X射线衍射仪(XRD)分别观察煤焦的形貌结构和测量煤焦的晶体化程度。使用热重在不同的CO2和H2O浓度的气氛条件下研究在CO2浓度和H2O浓度变化时热解条件对煤焦-CO2和煤焦-H2O气化的影响。结果显示对于实验用褐煤,快速热解和慢速热解条件生成的煤焦均以密实型结构焦为主。快速热解和慢速热解条件生成的煤焦的煤焦-CO2和煤焦-H2O气化过程均可以通过收缩核模型很好地拟合。煤焦-H2O反应和煤焦-CO2反应的反应位并不相同。  相似文献   

20.
O2/CO2 combustion has attracted considerable attention as a promising technology for CO2 capture. Using biomass for fuel is considered carbon neutral, and O2/CO2 biomass combustion can mitigate the deleterious environmental effect of greenhouse. In this study, the effect of CO2, the main component gas in O2/CO2 combustion, on the pyrolysis characteristics of biomass is investigated. Cellulose, lignin, and metal-depleted lignin pyrolysis experiments were performed using a thermobalance. Information on the surface chemistry of the chars was obtained by Fourier transform infrared (FTIR) spectroscopy to investigate changes in the surface chemistry during pyrolysis under different surrounding gasses. When the temperature increased to 1073 K at heating rate of 1 K s?1, the char yield of lignin in the presence of CO2 increased by about 10% compared with that under Ar. However, for cellulose and metal-depleted lignin, no significant difference appeared between pyrolysis under CO2 and that under Ar. FT-IR showed that a strong peak corresponding to carbonate ions appeared in the char derived from lignin under CO2. Therefore, salts such as Na2CO3 or K2CO3 formed during the lignin pyrolysis under CO2. At around 1650–1770 cm?1, a significant difference appeared in the FTIR spectra of chars formed under CO2 and those formed under Ar. C=O groups not associated with an aromatic ring were found only in chars formed under CO2. It was suggested that these salts affected the char formation reaction, in that the char formed during lignin pyrolysis under CO2 had unique chemical bands that did not appear in the lignin-derived char prepared under Ar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号