首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sol-gel thiocyanatopropyl-functionalized silica sorbent was synthesized and employed for an automated on-line microcolumn preconcentration platform as a front-end to inductively coupled plasma atomic emission spectroscopy (ICP-AES) for the simultaneous determination of Cd(II), Pb(II), Cu(II), Cr(III), Co(II), Ni(II), Zn(II), Mn(II), Hg(II), and V(II). The developed system is based on an easy-to-repack microcolumn construction integrated into a flow injection manifold coupled directly to ICP-AES’s nebulizer. After on-line extraction/preconcentration of the target analyte onto the surface of the sorbent, successive elution with 1.0 mol L−1 HNO3 was performed. All main chemical and hydrodynamic factors affecting the effectiveness of the system were thoroughly investigated and optimized. Under optimized experimental conditions, for 60 s preconcentration time, the enhancement factor achieved for the target analytes was between 31 to 53. The limits of detection varied in the range of 0.05 to 0.24 μg L−1, while the limits of quantification ranged from 0.17 to 0.79 μg L−1. The precision of the method was expressed in terms of relative standard deviation (RSD%) and was less than 7.9%. Furthermore, good method accuracy was observed by analyzing three certified reference materials. The proposed method was also successfully employed for the analysis of environmental water samples.  相似文献   

2.
A novel dual-syringe flow injection (DSFI) on-line column preconcentration system coupled to flame atomic absorption spectrometry (FAAS) has been developed for automatic trace metal determination in natural waters and biological samples. The proposed method was based on the on-line retention of Cd(II), Pb(II), Cu(II), Co(II) and Ni(II) ions onto the surface of a strong cation exchanger resin named HyperSepSCX, in a readily exchangeable micro-cartridge format and subsequent elution with HCl (2?mol?L?1) prior to flame atomization. The sorbent and the micro-cartridge exhibited high long term chemical and mechanical stability with fast kinetics for all analytes. All main chemical and hydrodynamic factors affecting the performance of the proposed method were studied thoroughly. For 15.0?mL sample volume, the enhancement factors were calculated as 92, 97, 93, 99 and 77 for Cd(II), Pb(II), Cu(II), Co(II) and Ni(II) respectively and the detection limits (3?s) were in the range between 0.14 and 2.1?µg?L?1. The precision (RSD) obtained was lower than 3.3% for all five metal ions with a sample throughput of 12?h?1. The developed method was evaluated by analyzing certified reference materials and spiked environmental natural water samples.  相似文献   

3.
A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L−1 HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g−1 for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL−1 for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n = 8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.  相似文献   

4.
A new Cu(II) ion-imprinted sorbent was synthesized by a surface imprinting technique and characterized by FT-IR and SEM. Compared to the non-imprinted sorbent, the Cu(II) ion-imprinted sorbent had a higher adsorption capacity and selectivity for Cu(II). The static adsorption capacity of the Cu(II) ion-imprinted sorbent and non-imprinted sorbent for Cu(II) were 84.5 and 46.5 μmol?g?1, respectively. The best selectivity coefficient over Zn(II) or Cd(II) ion was over 12. The relative selectivity coefficients of the sorbent for Cu(II) in the presence of Zn(II) and Cd(II) were 13 and 35, respectively. Furthermore, the new sorbent possessed a fast kinetics for Cu(II) sorption from aqueous solution with saturation time of <30 min, and could be used repeatedly. The standard deviation for 11 replicate determinations of 0.5 mg?L?1 Cu(II) was 0.8%. This new Cu(II) ion-imprinted sorbent can be used as an effective solid-phase extraction material for the selective preconcentration and separation of Cu(II).  相似文献   

5.
A new sorbent – salen impregnated silica gel – was prepared and characterised for application as a minicolumn packing for flow-injection on-line preconcentration of cadmium(II). The system was coupled with flame atomic absorption spectrometer (FI-FAAS). The optimal pH for Cd(II) sorption was in the range of 7.4–8.8 and nitric acid (1%, v/v) was efficient as eluent. Sorption was most effective within the sample flow rate up to 7?mL?min?1. Sorption capacity of the sorbent found in a batch procedure was 26.3?µmol?g?1 (2.95?mg?g?1). Enrichment factor (EF) and limit of detection (LOD) obtained for 120-second loading time were 113 and 0.26?µg?L?1, respectively. The sorbent stability in the working conditions was proved for at least 100 preconcentration cycles. The evaluated method was applied to Cd(II) determination in various water samples.  相似文献   

6.
Morin was successful as a chemical modifier to improve the reactivity of the nanometer SiO2 surface in terms of selective binding and extraction of heavy metal ions. This new functionalized nanometer SiO2 (nanometer SiO2-morin) was used as an effective sorbent for the solid-phase extraction (SPE) of Cd(II), Cu(II), Ni(II), Pb(II), Zn(II) in solutions prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of metal ions were optimized with respect to different experimental parameters using static and dynamic procedures in detail. The pH 4.0 was chosen as the optimum pH value for the separation of metal ions on the newly sorbent. Complete elution of the adsorbed metal ions from the nanometer SiO2-morin was carried out using 2.0 mL of 0.5 mol L−1 of HCl. Common coexisting ions did not interfere with the separation and determination at pH 4.0. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 22.36, 36.8, 40.37, 33.21 and 25.99 mg metal/g SiO2-morin for Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The time for 95% sorption for Cu(II) and Ni(II) and 70% sorption for Cd(II), Pb(II) and Zn(II) was less than 2 min. The relative standard deviation (RSD) of the method under optimum conditions was lower than 5.0% (n = 11). The procedure was validated by analyzing the certified reference river sediment material (GBW 08301, China), the results obtained were in good agreement with standard values. The nanometer SiO2-morin was successfully employed in the separation and preconcentration of trace Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) from the biological and natural water samples yielding 75-folds concentration factor.  相似文献   

7.
A silica-based inorganic sorbent was synthesized by the thermal decomposition of ammonium heptamolybdate on silica and applied for the preconcentration and simultaneous determination of Cd, Co, Cr, Cu, Fe, Mn, Ni, and Pb in river water samples using a column system with flame atomic absorption spectrometry. Attenuated total reflection-Fourier transformation infrared spectroscopy, scanning electron microscopy, and electron dispersive spectroscopy were used for sorbent characterization. The effects of pH, sample volume, eluent type, eluent concentration, eluent volume, sample flow rate, and matrix ions (Al, Bi, Ca, Mg, and Zn) on the recovery of the metals in model solutions were investigated. The adsorption capacities (µmol g?1) of SiO2-MoO3 were 88.96 (Cd), 169.69 (Co), 153.85 (Cr), 188.88 (Cu), 179.05 (Fe), 163.81 (Mn), 136.31 (Ni), and 38.61 (Pb). The detection limits of the method were 9.09, 10.82, 10.77, 49.57, 31.64, 6.40, 8.86, 19.15?µg L?1 for Cd, Co, Cr, Cu, Fe, Mn, Ni, and Pb, respectively, with a preconcentration factor of 25. The developed method was used for the determination of the target metals in real samples and the recoveries for spiked samples were found to be from 91.2% to 102.9%.  相似文献   

8.
Li Y  Jiang Y  Yan XP 《Talanta》2004,64(3):758-765
A further study on a newly developed flow injection (FI) on-line multiplexed sorption preconcentration (MSP) using a knotted reactor coupled with flame atomic absorption spectrometry (FAAS) was carried out to demonstrate its applicability and limitation for trace element determination. For this purpose, Cr(VI), Cu(II), Ni(II) and Co(II) were selected as the analytes, and detailed comparison was made between the MSP-FAAS and conventional FI on-line sorption preconcentration FAAS in respect to retention efficiency and linear ranges of absorbance versus sample loading flow rate and total preconcentration time. Introduction of an air-flow for removal of the residual solution in the KR after each sub-injection in the MSP procedure played a decisive role in the improvement of retention efficiency. The linearity of absorbance versus sample loading flow rate or total preconcentration time was extended to a more degree for the metal ions with less stability of their PDC (pyrrolidine dithiocarbamate) complexes than those with more stable PDC complexes. It seems that the MSP procedure behaves advantages beyond the inflection points in the diagrams of absorbance versus total preconcentration time and sample loading flow rate obtained by conventional (a single continuous) preconcentration procedure. With a sample loading flow rate of 6.0 ml min−1 and a total preconcentration time of 180 s, the retention efficiencies were increased from 25, 46, 41 and 63% with a single continuous sorption preconcentration to 44, 78, 65 and 75% with a six sub-injection preconcentration procedure for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The detection limits were 0.40, 0.33, 0.31 and 0.26 μg l−1 for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The precision (R.S.D.) for eleven replicate determination of 2 μg l−1 Cr(VI), Co(II) and Ni(II), and 1 μg l−1 Cu(II), was 2.1, 4.1, 2.6 and 1.7%, respectively.  相似文献   

9.
A new method that utilizes p-dimethylaminobenzaldehyde-modified nanometer SiO2 (SiO2-p-DMABD) as a solid phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). The preconcentration conditions of analytes were investigated, including the pH value, the shaking time, the mass of sorbent, the sample flow rate and volume, the elution condition and the interfering ions. The adsorption capacity of nanometer SiO2-p-DMABD was found to be (mg g− 1) Cr(III): 6.2, Cu(II): 18.6, Fe(III): 4.7 and Pb(II): 6.0 at pH 4. The adsorbed metals were quantitatively eluted with 4 mL of 1.0 mol L− 1 HCl. According to the definition of IUPAC, the detection limits (3σ) of this method for Cr(III), Cu(II), Fe(III) and Pb(II) were 0.79, 1.27, 0.40 and 1.79 ng mL− 1, respectively. The proposed method achieved satisfied results when it was applied to the determination of trace Cr(III), Cu(II), Fe(III) and Pb(II) in biological and water samples.  相似文献   

10.
A novel Pb(II) ion-imprinted mesoporous sorbent (IIMS) was synthesized by a surface imprinting technique combined with a sol-gel process and characterized by FT-IR and N2 adsorption-desorption. Compared to the non-imprinted mesoporous sorbent (NIMS), the IIMS had a higher adsorption capacity and selectivity for Pb(II). The maximum static adsorption capacities of the IIMS and NIMS for Pb(II) were 221 and 173 mg g?1, respectively. The relative selectivity coefficients of the sorbent for Pb(II) in the presence of Cd(II), Cu(II) and Zn(II) were 3.7, 1.9 and 3.4, respectively. Furthermore, the IIMS possessed a fast kinetics for Pb(II) sorption from aqueous solution with saturation time of <?20 min, and could be used repeatedly. The detection limit (3σ) of this method was 0.23 ng mL?1 and relative standard deviation of 11 replicate determinations was 3.7 %. The IIMS has been applied to selectively separate and determine Pb(II) in real water samples with satisfactory results.  相似文献   

11.
Human hair shavings were characterized as a sorbent for trace metals. At pH 7.0 metal sorption follows the order Pb(II)>Cd(II)>Cr(VI)>Fe(III)>Cu(II)>Ni(II)>Mn(VI). Metal recovery is quantitative for Pb and Cd after 30 min of equilibration. Recovery of other metals is less quantitative and varies with pH. For example, while Cu is best recovered at pH 5, Ni and Mn are sorbed optimally in the basic pH region. Sorbed metals can be washed off the sorbent with 0.5 mol L(-1) strong mineral acids or more completely with 0.1 mol L(-1) ethylenediaminetetraacetic acid (EDTA). Typical sorption isotherms were obtained for Cd and Pb with sorption capacities of 39 and 26 micromol g(-1), respectively.Hair sorbent was used for 40-fold pre-concentration of Cd and Pb from treated wastewater samples followed by flame atomic absorption spectroscopic (FAAS) determination. Comparison of the data obtained for lead and cadmium by the proposed pre-concentration method with that by graphite furnace atomic absorption spectroscopy (GFAAS) showed 79 to 86% recovery and comparable analytical precision. Common cations and anions at the levels normally present in natural water do not interfere in the proposed pre-concentration-FAAS method.  相似文献   

12.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized by glutaric dihydrazide (GDH) and characterized with FT-IR technique. This new sorbent was used for enrichment and preconcentration of Co(II), Cd(II), Pb(II), and Pd(II) ions. The adsorption was achieved quantitatively on MWCNTs at pH 4.0, and then the retained metal ions on the adsorbent were eluted with 1.5 mol L?1 HNO3. The effects of analytical parameters including pH of the solution, eluent type, sample volume, and matrix ions were investigated for optimization of the presented procedure. The adsorption capacity of the adsorbent at optimum conditions was found to be 33.6, 29.2, 22.1, and 36.0 mg g?1 for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The LOD values of the method were 0.16, 0.19, 0.17, and 0.12 ng mL?1 (3Sb, n = 10) for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The RSDs values of the method were 0.75, 0.85, 1.16, and 1.30 ng mL?1 for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The method was applied for the determination of analytes in soil, well water, and wastewater samples with satisfactory results.  相似文献   

13.
A solid phase extraction procedure for the separation and preconcentration of trace amounts of Cd(II) and Pb(II) using the alizarin red S modified TiO2 nanoparticles prior to their determination by flame atomic absorption spectrometry has been proposed. The influences of some analytical parameters such as pH, flow rates of sample and eluent, type and concentration of the eluent, and interfering ions on the recovery of Cd(II) and Pb(II) by the sorbent were investigated. The analytes were quantitatively sorbed from the aqueous solution at pH 5.5 onto a microcolumn packed with the sorbent and recovered with 2.0?mL of 1.5?mol?L?1 hydrochloric acid. Under the optimum experimental conditions, the detection limits for Cd(II) and Pb(II) were 0.11 and 0.30?ng?mL?1 and the relative standard deviations for ten replicate measurements of 5.0 and 50.0?ng?mL?1 of Cd(II) and Pb(II) were 2.1 and 1.9%, respectively. A sample volume of 200?mL resulted in a preconcentration factor of 100. The method was successfully applied to the determination of Cd(II) and Pb(II) in water and biological samples, and accuracy was examined by the recovery experiments, independent analysis using electrothermal atomic absorption spectrometry, and analysis of a water standard reference material (SRM 1643e).  相似文献   

14.
A new solid phase extractant, sinapinaldehyde (SA) modified SBA-15 mesoporous silica, was developed for selective extraction and preconcentration of trace Pb(II) from aqueous solutions. The successful immobilization of SA on SBA-15 and the strong interaction between SA-SBA-15 and Pb(II) were characterized and confirmed by FTIR spectroscopy and scanning electron microscopy. Parameters such as solution pH, shaking time, eluent condition and sample volume were optimized so that the maximum removal of Pb(II) from solution could be achieved. At pH 4.0, the maximum adsorption capacity of the sorbent for Pb(II) was found to be 33.6?mg?g?1 and the adsorbed Pb(II) could be completely eluted using a mixed solution of 2?M HCl and 5% CS(NH2)2. Some common metal ions such as K(I), Na(I), Mg(II), Ca(II), Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) did not interfere with the adsorption of trace Pb(II). The detection limit of the present method was found to be 1.3?ng?mL?1 and the relative standard deviation was less than 2.0% (n?=?8). These results suggested that this new sorbent is very efficient and selective for the removal of trace Pb(II) in water samples.  相似文献   

15.
Summary The adsorption behaviour of ten metal complexes Cr(III), Cr(VI), Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) with ferron on Zeo-Karb-226 in the H+ form was investigated at eight different pH-values in order to develop a preconcentration technique for trace amounts of these elements in aqueous solution. The concentrations of the remaining unadsorbed metal ions were determined by atomic absorption spectrophotometry. Under the present experimental conditions, Cr(III) and Pb(II) can be quantitatively determined within the pH range 4–8, while for Cd(II), the optimum pH-range is 7–11. But at pH 11, more than 95% of Cu(II) and Co(II) can be extracted from aqueous solution. The suitability of the technique has been evaluated by analyzing cadmium in simulated water samples. The results indicate that as low as 5 g 1–1 of CD can be recovered with more than 96% efficiency from 11 of simulated water solution.
Adsorptionsverhalten einiger Metallkomplexe mit Ferron an Zeokarb-226: eine AAS-Untersuchung
Zusammenfassung Das Adsorptionsverhalten der Komplexe von Cr(III), Cr(VI), Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II), Cd(II) und Pb(II) mit Ferron an Zeokarb-226 in der H+-Form wurde bei acht verschiedenen pH-Werten untersucht, um eine Anreicherungsmethode für Spuren dieser Elemente zu entwickeln. Die Konzentrationen der verbliebenen nicht adsorbierten Metallionen wurden mit Hilfe der AAS bestimmt. Cr(III) und Pb(II) können im pH-Bereich 4–8 quantitativ erfaßt werden, während der optimale Bereich für Cd(II) bei pH 7–11 liegt. Bei pH 11 werden jedoch mehr als 95% Cu(II) und Co(II) aus der wäßrigen Lösung extrahiert. Der Nutzen des Verfahrens wurde durch Bestimmung von Cd(II) in simulierten Wasserproben erwiesen. Noch 5 g/l Cd können zu mehr als 96% aus 11 Wasserprobe wiedergefunden werden.
  相似文献   

16.
Liu Y  Liang P  Guo L 《Talanta》2005,68(1):25-30
Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer TiO2) was prepared by sol-gel method and characterized by using X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorptive potential of immobilized nanometer TiO2 for the preconcentration of trace Cd, Cr, Cu and Mn was assessed in this work. The metal ions studied can be quantitative retained at a pH range of 8-9, and 0.5 mol L−1 HNO3 was sufficient for complete elution. The adsorption capacity of immobilized nanometer TiO2 for Cd, Cr, Cu and Mn was found to be 2.93, 2.11, 6.69 and 2.47 mg g−1, respectively. A new method using a microcolumn packed with immobilized nanometer TiO2 as sorbent has been developed for the preconcentration of trace amounts of Cd, Cr, Cu and Mn prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). The method has been successfully applied for the determination of trace elements in some environmental samples with satisfactory results.  相似文献   

17.
Lemos VA  Baliza PX 《Talanta》2005,67(3):564-570
A new functionalized resin has been applied in an on-line preconcentration system for copper and cadmium determination. Amberlite XAD-2 was functionalized by coupling it to 2-aminothiophenol (AT-XAD) by means of an NN spacer. This resin was packed in a minicolumn and used as sorbent in the on-line system. Metal ions were sorbed in the minicolumn, from which it could be eluted directly to the nebulizer-burner system of the flame atomic absorption spectrometer (FAAS). Elution of Cd(II) and Cu(II) from minicolumn can be made with 0.50 mol l−1 HCl or HNO3. The enrichment factors obtained were 28 (Cd) and 14 (Cu), for 60 s preconcentration time, and 74 (Cd) and 35 (Cu), if used 180 s preconcentration time. The proposed procedure allowed the determination of cadmium and copper with detection limits of 0.14 and 0.54 μg l−1, respectively, when used preconcentration periods of 180 s. The effects of foreign ions on the adsorption of these metal ions are reported. The validation of the procedure was carried out by analysis of certified reference material. This procedure was applied to cadmium and copper determination in natural, drink and tap water samples.  相似文献   

18.
We report that magnetic multiwalled carbon nanotubes functionalized with 8-aminoquinoline can be applied to the preconcentration of Cd(II), Pb(II) and Ni(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, magnetic sorbent amount, and pH value) were selected as the main factors affecting sorption, and four variables (type, volume and concentration of the eluent; elution time) were selected for optimizing elution. Following sorption and elution, the ions were quantified by FAAS. The LODs are 0.09, 0.72, and 1.0 ng mL?1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <5.1 % for five separate batch determinations at 30 ng mL?1 level of Cd(II), Ni(II), and Pb(II) ions. The sorption capacities (in mg g?1) of this new sorbent are 201 for Cd(II), 150 for Pb(II), and 172 Ni(II). The composite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.
Figure
A schematic diagram for synthesis of functionalized magnetic multiwalled carbon nanotube.  相似文献   

19.
A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The new sorbent was prepared by oxidative surface modification. Experimental conditions for effective adsorption of trace levels of Cr(III), Fe(III), Hg(II) and Pb(II) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of absorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L−1 HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4, 28.9, 60.5 and 49.9 mg g−1 for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The time for 94% adsorption of target metal ions was less than 2 min. The detection limits of the method was found to be 0.28, 0.22, 0.09 and 0.17 ng mL−1 for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The precision (R.S.D.) of the method was lower 4.0% (n = 8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) in natural and certified samples with satisfactory results.  相似文献   

20.
Chromium may exist in environmental waters as Cr(III) and Cr(IV), the latter being the toxic and carcinogenic form. Since atomic absorption spectrometry (AAS) and inductively coupled plasma atomic emission spectrometry can only yield information on total Cr concentration, a polymer resin bearing O,O-donor chelating groups such as the maleic acid-functionalized XAD(CO)CHCHCOOH resin was synthesized to selectively retain Cr(III) at pH 4.0-5.5. The dynamic breakthrough capacity of the resin for Cr(III) at pH 5.0 was 7.52 mg g−1, and the preconcentration factor extended to 250-300. Chromium(III) in the presence of 250-fold Cr(VI)—which was not retained—could be effectively preconcentrated on the NH4+-form of the resin and determined by AAS or diphenylcarbazide (DPC) spectrophotometry. When Cr(VI) was reduced to Cr(III) with Na2SO3 solution brought to pH 1 by the addition of 1 M H2SO4, and preconcentrated on the resin, total Cr could be determined. The developed method was validated with a blended coal sample CRM-1632. Since the adsorption behavior as a function of pH of possible interferent metal ions, e.g. Ni(II), Co(II), Cu(II), Cd(II), Zn(II), Pb(II) and Fe(III), was similar to that of Cr(III), selective elution of Cr(III) from the resin was realized using a mixture of 1 wt.% H2O2+1 M NH3. The eluate containing Cr as chromate could be directly analyzed by diphenyl carbazide spectrophotometry without any adverse effect from the common interferents of this method, i.e. Fe(III), Cu(II) Hg(II), VO3, MoO42− and WO42−. Various synthetic waste solutions typical of electroplating bath effluents containing Cr, Cu, Ni, Zn, Na, Ca, cyanide (and chemical oxidation demand (COD), achieved by glucose addition) were subjected to pretreatment procedures such as hypochlorite oxidation (of cyanide) and catalytic oxidation (of COD) with peroxodisulfate. Chromium determination gave satisfactory results. The combined column preconcentration—selective elution—diphenylcarbazide spectrophotometric determination was also successfully applied to the determination of Cr in artificial and real seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号