首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
 研究了同心分区偏振偏转相位板对径向偏振光梯度力的调制效应。给出了相位板各部分偏振偏转角不同时,光学梯度力的分布情况。模拟结果表明:随着同心分区相位板各部分的半径和偏振旋转角的改变,光学梯度力方向及大小明显变化,且会产生许多可控的梯度力分布模式,可应用于微粒的收集、分离和合并。结果显示同心分区相位板对径向偏振光的调制可以用来生成可调光镊。  相似文献   

2.
Xiumin Gao  Jinsong Li  Songlin Zhuang 《Optik》2010,121(19):1769-1774
Focusing properties of the azimuthally polarized beam induced by a pure phase plate are investigated theoretically. The pure phase plate consists of two concentric portions, one center circle portion and one outer annular portion, through which the azimuthally polarized beam passed evolves into concentric piecewise azimuthally polarized beam. When the phase shift of the center portion is π, one ring focus may evolve into novel focal patterns with increasing radius of the center circle portion, such as cylindrical crust focus, two-ring focus, and three-ring focus. And if the geometrical parameters are unchanged, focal patterns also changes considerably with tunable phase of the center portion. Ring focus shifts along the optical axis on the increasing phase. Some optical gradient force distributions and dependence of focal shift on phase shift are also illustrated. This kind of concentric piecewise azimuthally polarized beam can be used in optical manipulation technology.  相似文献   

3.
Xiumin Gao  Song Hu  Haitao Gu  Jian Wang 《Optik》2009,120(11):519-523
Focal shift of a concentric piecewise cylindrical vector beam is investigated by means of vector diffractive theory. A section of the beam consists of three concentric portions. The center circle portion and outer annular portion are radial polarized, and the inner annular portion is generalized polarized. The phase of the inner annular portion is tunable. For certain geometric parameters of the beam, the focal shift occurs and can be adjusted by phase shift and polarized direction of the inner annular portion. For some cases, a three-peak focal pattern may occur, and peaks shift in the same direction, and one local minimum also shifts. For some other cases, a two-peak focal pattern may occur with shifting peaks. The tunable quantitative focal shift is investigated in detail.  相似文献   

4.
常强  杨艳芳  何英  冷梅  刘海港 《光学学报》2012,32(6):626001-222
基于Richards-Wolf矢量衍射积分公式,数值分析了同轴三环非均匀混合偏振矢量光束经过高数值孔径透镜的聚焦特性。该矢量光束由同轴三环局域线偏振矢量光束通过一个相位延迟角为δ的液晶相位延迟器产生,光束偏振变为包含线偏振、圆偏振和椭圆偏振的混合态。同轴三环局域线偏振矢量光束的偏振分布是由径向向内偏振的外环光束、径向向外偏振的内环光束和线偏振方向与径向方向夹角为φ2的中环光束构成。数值模拟结果显示该混合偏振矢量光束的聚焦强度分布与参数φ2和相位延迟角δ密切相关,当选取适当的φ2和δ时,在焦平面附近产生沿光轴方向的三维多点光俘获结构——暗光链,这在光学微操纵领域具有潜在的应用价值。  相似文献   

5.
The evolution of gradient force pattern induced by an annular phase distribution plate is numerically investigated in this paper. The phase plate, which may alter the wavefront phase of incident Gaussian beam with tunable topological charge, consists of two concentric portions, one center circle portion and one annular portion. Numerical simulations show that the proposed plate can induce the tunable gradient force on the particles in the focal region. By adjusting the geometrical parameters or changing the topological charge of the phase-shifting plate, some novel trap patterns may occur, such as triangle shape trap, quadrangle shape trap, pentagon shape trap, hexagon shape trap, and the shapes of optical traps change very considerably. Therefore, the phase plate may be very advantageous for constructing tunable optical traps. The method is more versatile in that it allows precise control of the parameters and has the possibility of generating specific patterns of optical vortices. The gradient force pattern focal of intensity distribution depends on both the annular width and the topological charge.  相似文献   

6.
Jinsong Li  Xiumin Gao  Chenxia Li 《Optik》2011,122(4):333-336
The generalized cylindrical vector beam is just a linear combination of radial and azimuthal polarization. For radially polarized light in the focal plane, there are two electric field components, the radial component and z-component whose magnitude increase with the increase of numerical aperture. By contrast, for azimuthally polarized light in the focal plane, there is only one electrical field component in the azimuthal polarization, it is easy to understand the difference between the two polarization effects. In this paper, we demonstrate how this phenomenon can be harnessed to make a properly selected polarization component to achieve high focal depth in high numerical aperture systems. Numerical simulations show that the evolution of the focal shape is very considerable by changing polarization rotation angle of the generalized cylindrical vector beam. And some interesting focal spots and focal split may occur. And if the ratio of radial and azimuthal polarization is set properly by changing the polarization rotation angle, a largest focal depth is achieved. The tunable range of the focal depth is very considerable. The ratio of radial and azimuthal polarization is different in different NA optical system for obtaining the largest focal depth. We will denote a technique of polarization-assisted high focal depth in high numerical aperture systems.  相似文献   

7.
Axisymmetric Bessel-modulated Gaussian beam with quadratic radial dependence (QBG beam) has attracted much attention recently. In this paper, the focal shift of the cylindrical vector QBG beam with radial variance phase wavefront is investigated theoretically by vector diffraction theory. Results show that focus shifts considerably by changing the phase parameter C that indicates the radial phase variance speed. Under condition of small beam parameter μ of cylindrical vector QBG beam, there is one focal peak that shifts far away from optical aperture on increasing C. When μ increases, there may occur two focal peaks that also shift remarkably on increasing C. And it was found that the dependence of focal shift distance on increasing phase parameter is linear. Phase parameter adjusts the focal shift distance, while, polarization angle does not affect focal shift obviously.  相似文献   

8.
Focusing properties of the cylindrical vector axisymmetric Bessel-modulated Gaussian beam with quadratic radial dependence (QBG beam) in high numerical aperture system is investigated theoretically by vector diffraction theory. Results show that intensity distribution in focal region can be altered considerably by beam parameter μ and polarization angle. Polarization angle may adjust transverse intensity distribution, for instance from one focal spot to one ring shape. While μ alters axial intensity distribution remarkably, focal splitting may occur with tunable focal shift, and real value μ also may induce local intensity minimum. For certain case, with increasing imaginary value μ, transverse focal spot shrinks accompanied with higher full width half maximum of axial intensity distribution.  相似文献   

9.
In this paper attention is given to the effects of primary spherical aberration on the cylindrical polarized vortex beam based on the vector diffraction theory. It is observed that by properly choosing the polarization angle and topological charge one can obtain many novel focal patterns suitable for optical tweezers, laser printing and material process. However, it is observed that the focusing objective with spherical aberration generates structural modification and positional shift of the generated focal structure.  相似文献   

10.
Intensity distribution in focal region plays an important role in many optical systems. In this paper, the focal patterns of higher order hyperbolic-cosine-Gaussian (HOCG) beam in focal plane were investigated. The HOCG beam contains one spiral optical vortex on its optical axis. Results show that the focal pattern can be altered considerably by beam order of the incident HOCG beam, and some novel focal patterns may occur, including foursquare focal pattern, cross-shaped dark focal focus, foursquare intensity peaks chain, and multiple intensity peaks array. Focal pattern evolution principle on increasing beam order also differs remarkably under condition of different topological charge of the optical vortex and displacement parameter associated with the cosh parts. And like topological charge and displacement parameter, the beam order and numerical aperture may affect focal pattern.  相似文献   

11.
Xiumin Gao  Jian Wang  Songlin Zhuang 《Optik》2010,121(7):658-664
Vector beams have attracted much interest recently. In this paper, focusing properties of the radially polarized hyperbolic-cosine-Gaussian beam are investigated. Simulation results show that the focal depth increases with increasing cosine parameter in the cosine term of the beam, while focal spot decreases simultaneously, namely, superresolution occurs. Focal depth increase velocity is quicker for larger cosine parameter, while the transverse focal spot shrinks more quickly for smaller cosine parameter. In addition, for two-portion concentric piecewise radially polarized hyperbolic-cosine-Gaussian beam with π phase shift in center circle portion, focal pattern evolves considerably with increasing cosine parameter, and the evolution principle differs for different radius of the center circle portion. Focal splitting and novel focal spots may appear. This kind of vector beam can be used in optical storage, optical manipulation, and lithography.  相似文献   

12.
Xiumin Gao  Qiufang Zhan  Jian Wang 《Optik》2011,122(6):524-528
Focusing properties of the spirally polarized axisymmetric Bessel-modulated Gaussian beam with quadratic radial dependence (QBG beam) are investigated theoretically by vector diffraction theory. Calculation results show that intensity distribution in focal region can be altered considerably by beam parameter μ and spiral parameter C that indicates polarization spiral degree. For certain real value μ, focal spot can evolve from one focal spot to one focal ring, spherical crust focal shape, then two focal rings on increasing spiral parameter C. It was found that under condition of different μ, evolution principle of focal pattern differs very remarkably on increasing C. And some novel focal shapes may appear, including rhombic shape, quadrangular shape, two-spherical crust focus shape, two-peak shape, one dark hollow focus, two dark hollow focuses pattern, triangle dark hollow focus.  相似文献   

13.
Focusing properties of radially polarized Lorentz–Gauss beam with one on-axis optical vortex was investigated by vector diffraction theory. Results show that intensity distribution in the focal region can be altered considerably by charge number of the optical vortex and the beam parameters. Many novel focal patterns may occur, Such as Peak-centered, donut focal shapes which is potentially useful in optical tweezers, material processing and laser printing.  相似文献   

14.
Focus evolution of linearly polarized Lorentz beam with sine-azimuthal variation wavefront induced by one on-axis optical vortex was investigated theoretically in this article. Calculation results show that the focal pattern can be altered considerably by the charge number of on-axis optical vortex under condition of certain beam parameters and phase parameter that indicates the sine phase change frequency on increasing azimuthal angle. And the focal evolution principle differs remarkably for different beam parameters and the phase parameter. In focus evolution process, some novel focal patterns appear, including annular focal pattern, two-peak focal pattern, intensity lines, hexagon containing two peaks, swallowtail shape, multipede shape, and complex focal pattern. Introduction of optical vortex adds one controllable parameter to alter focal pattern, which may extend application of Lorentz beam in some focusing systems.  相似文献   

15.
We propose a new approach to generate a controllable three-dimensional (3D) optical cage by double-mode cylindrical vector beam in the vicinity of focus, by controlling the polarization state of beam. The simulation results show that the 3D optical cage of spheroid surface shape with a sharp dark region surrounded by a uniform optical barrier with a maximum deviation of 2% is achieved. The finite-difference time-domain calculation of optical force validates that such a kind of 3D optical cage has the trapping capability of the low-refractive-index particles with the size being much smaller than the light wavelength.  相似文献   

16.
Focusing properties of spirally polarized hollow Gaussian beam (HGB) are investigated theoretically by vector diffraction theory in this article. Results show that the optical intensity in focal region of spirally polarized HGB can be altered considerably by the beam order, numerical aperture of the focusing system, and spiral parameter that indicates the polarization spiral degree of the spirally polarized HGB. Spiral parameter can induce focal pattern change in axial direction remarkably, while beam order and numerical aperture affect radial foal pattern more obviously. The tunable principle of the focal pattern by spiral parameter differs very considerably under condition of different numerical aperture and beam order. Many novel focal patterns may occur in focal pattern evolution. It was also found that focal shift and focal depth can be altered significantly by spiral parameter and beam order.  相似文献   

17.
轴对称矢量光束聚焦特性研究现状及其应用   总被引:1,自引:0,他引:1       下载免费PDF全文
赵维谦  唐芳  邱丽荣  刘大礼 《物理学报》2013,62(5):54201-054201
轴对称矢量光束是一种空间非均匀偏振光束, 中心光强为零, 经物镜聚焦后能在焦点附近产生空间场分量. 在高变迹系数光学系统成像情况下, 与线偏光、圆偏光相比, 径向偏振光与光瞳滤波技术及图像复原技术结合, 能获得较小焦斑, 提高横向分辨力. 介绍了轴对称矢量光束的特性, 基于电偶极子辐射模型和矢量衍射理论研究了轴对称矢量光束经高数值孔径物镜聚焦后的特性, 系统介绍了基于轴对称矢量光束实现光斑紧聚焦的几种方法, 并简述了轴对称矢量光束在差动共焦超分辨成像领域的研究设想. 关键词: 差动共焦显微技术 紧聚焦 光瞳滤波 轴对称矢量光束  相似文献   

18.
The concept of spiral polarization is proposed as an extension of the generalized cylindrical vector beam. The focusing properties of this spatially variant polarization under high NA are studied. It can be shown that with one such polarization, the focus maintains a flat-top intensity shape independent of NA from NA = 0.82 up to NA = 0.95.  相似文献   

19.
Gradient force plays an important role in optical tweezers technique. In this paper, the tunable gradient force in focal plane of the hyperbolic-cosine–Gaussian (ChG) beam is investigated numerically. The ChG beam contains one spiral vortex and one non-spiral vortex. Simulation results show that the gradient force distribution can be altered considerably by decentered parameters of ChG beam, topological number of the spiral vortex, and vortex parameter of the non-spiral vortex. Many novel gradient force patterns can occur, which means corresponding optical traps may come into being, including ring optical trap, multiple-point trap pattern, line optical trap, rectangle trap pattern, and rhombus trap pattern. In addition, force pattern evolution principle may also differ significantly.  相似文献   

20.
In this article, vector diffraction theory is employed to investigate the focusing properties of the Gaussian beam through a phase plate. The phase plate may alter the wavefront phase of an incoming beam by topological charge. Both the circular phase distribution and the annular phase distribution plates are investigated. Numerical simulations show that the focal intensity distribution depends on topological charge. With changing topological charge, focal intensity distribution may evolve into ring shape, and some novel focal spots may occur. Focal intensity distribution evolving process with integer topological charge differs considerably from that with fraction topological charge. When the concentric annular phase plate is placed in the laser path, the focal intensity distribution depends on both the inner radius and topological charge. For small inner radius of the phase plate, doughnut-shape focal pattern occurs. With increasing inner radius, the diameter of the doughnut focal pattern decreases, and doughnut shape disappears slowly in some cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号