首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 研究了同心分区偏振偏转相位板对径向偏振光梯度力的调制效应。给出了相位板各部分偏振偏转角不同时,光学梯度力的分布情况。模拟结果表明:随着同心分区相位板各部分的半径和偏振旋转角的改变,光学梯度力方向及大小明显变化,且会产生许多可控的梯度力分布模式,可应用于微粒的收集、分离和合并。结果显示同心分区相位板对径向偏振光的调制可以用来生成可调光镊。  相似文献   

2.
Xiumin Gao  Jian Wang  Songlin Zhuang 《Optik》2010,121(7):658-664
Vector beams have attracted much interest recently. In this paper, focusing properties of the radially polarized hyperbolic-cosine-Gaussian beam are investigated. Simulation results show that the focal depth increases with increasing cosine parameter in the cosine term of the beam, while focal spot decreases simultaneously, namely, superresolution occurs. Focal depth increase velocity is quicker for larger cosine parameter, while the transverse focal spot shrinks more quickly for smaller cosine parameter. In addition, for two-portion concentric piecewise radially polarized hyperbolic-cosine-Gaussian beam with π phase shift in center circle portion, focal pattern evolves considerably with increasing cosine parameter, and the evolution principle differs for different radius of the center circle portion. Focal splitting and novel focal spots may appear. This kind of vector beam can be used in optical storage, optical manipulation, and lithography.  相似文献   

3.
Xiumin Gao  Song Hu  Haitao Gu  Jian Wang 《Optik》2009,120(11):519-523
Focal shift of a concentric piecewise cylindrical vector beam is investigated by means of vector diffractive theory. A section of the beam consists of three concentric portions. The center circle portion and outer annular portion are radial polarized, and the inner annular portion is generalized polarized. The phase of the inner annular portion is tunable. For certain geometric parameters of the beam, the focal shift occurs and can be adjusted by phase shift and polarized direction of the inner annular portion. For some cases, a three-peak focal pattern may occur, and peaks shift in the same direction, and one local minimum also shifts. For some other cases, a two-peak focal pattern may occur with shifting peaks. The tunable quantitative focal shift is investigated in detail.  相似文献   

4.
Based on the vector diffraction theory, the effect of complex phase plate on the intensity distribution of TEM11 mode azimuthally polarized Laguerre–Gaussian beam in the focal region of high NA lens is investigated theoretically. It is observed that a properly designed complex phase plate can generate a subwavelength focal hole having FWHM of 0.332λ with an extended focal depth of 54.4λ. We also observe that by using properly designed complex phase plate generates novel focal patterns including splitting of focal holes and multi focus are obtained. The author expects such investigation is worthwhile for optical manipulation and material processing technologies.  相似文献   

5.
Focal depth and focal splitting of hyperbolic-cosine-Gaussian beams induced by a phase plate were investigated. The pure phase plate consists of three concentric zones: a center circle zone, an inner annular zone and an outer annular zone. The phase variance of the inner annular zone is adjustable. Simulation results show that the focal depth can be adjusted by changing the radii of zones. With the increase of the inner radius of the outer annular zone, the focal spot broadens along the optical axis and splits into two peaks. Then the two peaks combine back into one peak. There are two critical values for the inner radius of the outer annular zone, at which focal spot changes sharply. The tunable range of the focal depth varies considerably. The phase variance of the inner annular zone affects focal depth also; when the phase variance is π, the effect attains maximum. The parameters of cosh parts of the beam affect both focal splitting and focal depth evidently; focal splitting disappears with increasing parameters of cosh parts, and focal depth increases with increasing the parameters of cosh parts in both the low and the high numerical-aperture optical systems.  相似文献   

6.
Focal shift of the radially polarized axisymmetric QBG beam with radial variance phase plate is investigated theoretically by vector diffraction theory. Axisymmetric Bessel modulated Gaussian beam with quadratic radial dependence (QBG beam) has attracted much attention recently. Calculation results show that focus shifts considerably by changing the phase parameter C that indicates the radial phase variance speed. Under condition of beam parameter μ of radially polarized axisymmetric QBG beam, there is one focal spot that shifts far away from optical aperture on increasing C. When increases the value of beam parameter, there may occur two focal peaks that also shift remarkably on increasing C.  相似文献   

7.
The evolution of gradient force pattern induced by an annular phase distribution plate is numerically investigated in this paper. The phase plate, which may alter the wavefront phase of incident Gaussian beam with tunable topological charge, consists of two concentric portions, one center circle portion and one annular portion. Numerical simulations show that the proposed plate can induce the tunable gradient force on the particles in the focal region. By adjusting the geometrical parameters or changing the topological charge of the phase-shifting plate, some novel trap patterns may occur, such as triangle shape trap, quadrangle shape trap, pentagon shape trap, hexagon shape trap, and the shapes of optical traps change very considerably. Therefore, the phase plate may be very advantageous for constructing tunable optical traps. The method is more versatile in that it allows precise control of the parameters and has the possibility of generating specific patterns of optical vortices. The gradient force pattern focal of intensity distribution depends on both the annular width and the topological charge.  相似文献   

8.
Focal shift of apodized truncated hyperbolic-cosine-Gaussian beam   总被引:1,自引:0,他引:1  
Focal shift of hyperbolic-cosine-Gaussian beams induced by pure phase apodizer was investigated theoretically. The pure phase apodizer consists of three concentric zones: center circle zone, inner annular zone and outer annular zone. And the phase variance of the inner annular zone is adjustable. Results show that intensity peak moves far from optical aperture and then shrinks sharply for certain radii of zones with increasing phase variance of the inner annular zone. Simultaneously, one new intensity peak occurs near optical aperture, moves far from the optical aperture, and then becomes intensity maximum peak, and repeats the evolution process of the former intensity peak. Tunable focal shift occurs with focal switch. Decreasing the phase variance can change the move direction of the intensity peaks. In addition, the maximum distance between the two intensity peaks can be altered by beam parameters of cosh parts, and the distance value increases and then decreases with increasing beam parameters of cosh parts for certain radii of zones. Tunable focal shift is also discussed to construct optical tweezers.  相似文献   

9.
《Physics letters. A》2006,360(2):330-335
Focusing properties of hyperbolic-cosine-Gaussian beam induced by phase plate were investigated theoretically in this Letter. The phase plate consists of three concentric zones: center circle zone, inner and outer annular zones with 0, π, 0 phase variations, respectively. Numerical simulations show that the evolution of the focal shape is altered considerably by changing the radii of zones and the decentered parameters in cosh parts of the light beam. Increase inner radius of the outer annular zone, focal spot broadens along optical axis, splits into two peaks, and then the two peaks combine back into one peak. In this process, the focal depth increases and then decreases three times, so three focal depth peaks occur. And the distance between the two peaks for bigger inner radius of outer annular zone is very small. With decreasing decentered parameters in cosh part of the beam, position of the three focal depth peaks shift toward to small radius, and the peak values also fall simultaneously.  相似文献   

10.
Focusing properties of the azimuthally polarized axisymmetric Bessel-modulated Gaussian beam with Quadratic Bessel Gaussian (QBG beam) and annular aperture are investigated theoretically by vector diffraction theory. Simulation results show that the intensity distribution in focal region of the azimuthally polarized axisymmetric QBG beam can be shifted along optical axis considerably by changing parameter (C). On introducing annular aperture (δ), focal pattern at the focus extends along optical axis. In this paper, we have shown the generation of focal hole and focal shifting in the axial direction of incident beam propagating through aligned optical system which is suitable for application such as optical manipulation and optical trapping.  相似文献   

11.
常强  杨艳芳  何英  冷梅  刘海港 《光学学报》2012,32(6):626001-222
基于Richards-Wolf矢量衍射积分公式,数值分析了同轴三环非均匀混合偏振矢量光束经过高数值孔径透镜的聚焦特性。该矢量光束由同轴三环局域线偏振矢量光束通过一个相位延迟角为δ的液晶相位延迟器产生,光束偏振变为包含线偏振、圆偏振和椭圆偏振的混合态。同轴三环局域线偏振矢量光束的偏振分布是由径向向内偏振的外环光束、径向向外偏振的内环光束和线偏振方向与径向方向夹角为φ2的中环光束构成。数值模拟结果显示该混合偏振矢量光束的聚焦强度分布与参数φ2和相位延迟角δ密切相关,当选取适当的φ2和δ时,在焦平面附近产生沿光轴方向的三维多点光俘获结构——暗光链,这在光学微操纵领域具有潜在的应用价值。  相似文献   

12.
Focal shift in radially polarized hollow Gaussian beam   总被引:2,自引:0,他引:2  
Xiumin Gao  Mingyu Gao  Jinsong Li  Jian Wang 《Optik》2011,122(8):671-676
Focal shift in radially polarized hollow Gaussian beam (HGB) with radial wavefront distribution is investigated theoretically. The wavefront phase distribution is cosine function of radial coordinate. Simulation results show that the intensity distribution in focal region of the radially polarized HGB can be adjusted considerably by the beam order of HGB n and cosine parameter C that indicates the phase change degree. On increasing C, focus can shift along optical axis and focal pattern changes remarkably. Focus may move in different direction under different condition. Focal shift distance fluctuates on increasing C, and fluctuation amplitude also increases simultaneously. In addition, threshold value of C for focal shift from one side to the other side of the paraxial focal plane differs for different n.  相似文献   

13.
Xiumin Gao  Jian Wang  Wendong Xu 《Optik》2007,118(6):257-265
The focusing properties of a concentric piecewise cylindrical vector beam is investigated theoretically in this paper. The beam consists of three portions with different and changeable phase retardation and polarization. Numerical simulations show that the evolution of the focal shape is very considerable by changing the radius and polarization rotation angle of each portion of the vector beam. And some interesting focal spots may occur, such as two- or three-peak focus, dark hollow focus, ring focus, and two-ring-peak focus. Corresponding gradient force patterns are also computed, and novel trap patterns, including cup shell shape trap with one trap at its each side along axis, rectangle shell shape trap with one trap at its each side, dumbbell optical trap, spherical shell optical trap, may occur, which shows that the concentric piecewise cylindrical vector beam can be used to construct controllable optical tweezers.  相似文献   

14.
We propose and simulate a method for generating a three-dimensional(3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combination of an inner ring with an azimuthally polarized field and an outer ring with a radially polarized field and a phase factor can produce an optical cage with a dark region enclosed by higher intensity. The shape of the cage can be tailored by appropriately adjusting the parameters of double-mode beams. Furthermore, multiple 3D optical cages can be realized by applying the shift theorem of the Fourier transform and macro-pixel sampling algorithm to a double-ring shaped radially and azimuthally polarized beam.  相似文献   

15.
Based on vector diffraction theory, the intensity distributions of azimuthally polarized double-ring-shaped higher order beams near the focus are calculated numerically. It is shown that a subwavelength focal hole with a quite long depth of focus, multiple focal holes are achieved near the focus, when tuning β (is the ratio of the pupil radius to the beam waist) in the focal plane for different modes under tight focusing through high NA lens. Such kind of beams plays an important role in optical trapping, laser cutting and optical manipulation applications.  相似文献   

16.
We study the focusing properties of a tight focusing of double ring shaped azimuthally polarized beam through complex phase mask (CPM) with high NA objective lens, based on vector diffraction theory. A novel design to generate an azimuthally polarized subwavelength focal hole having FWHM of 0.332λ with long focal depth of about 18.8λ is illustrated numerically. Apart from generating focal hole with long focal depth, it is observed that a properly designed CPM also generates multiple focal hole segments useful for laser cutting, microscopy and the manipulation of optical traps of low refractive index particles.  相似文献   

17.
Xiumin Gao  Jian Wang  Haitao Gu  Song Hu 《Optik》2009,120(5):201-702
The focusing properties of the hyperbolic-cosine-Gaussian beam, which contains an optical vortex induced by a non-spiral phase plate, are investigated numerically. The phase plate alters phase distribution linearly in a half-section part of the hyperbolic-cosine-Gaussian beam, which results in one non-spiral optical vortex. Results show that the phase variation rate of the non-spiral phase plate influences focal intensity distribution considerably, and some novel focal patterns, such as line focal spot, “H”-shape focal spot, and intensity peaks array, may occur. Focal shift, focal split, and focal switch appear in focal evolution with increasing phase variation rate. The focal evolution differs for different parameters in cosh parts of the hyperbolic-cosine-Gaussian beam. For big parameters in cosh parts, the value of local intensity peaks is comparable to that of maximum intensity peaks.  相似文献   

18.
Focal shift in radially polarized beam with radial cosine phase wavefront are investigated theoretically by vector diffraction theory. The wavefront phase distribution is cosine function of radial coordinate. Simulation results show that when the radially polarized beam with radial cosine wavefront phase is focused, the focal pattern differs considerably with frequency parameter in the cosine function term. On increasing C, focus can shift along optical axis and focal pattern changes remarkably. Focus may move in different direction under different condition. Focal shift distance fluctuates on increasing C, and fluctuation amplitude also increases simultaneously. In addition, focal shift direction can also be adjusted by changing frequency parameter in cosine function.  相似文献   

19.
Rui Fu  Xiumin Gao  Xiang Tang  Qing Xin  Xinmiao Lu  Lingwei Guo 《Optik》2013,124(24):6820-6826
The pure phase plate was introduced to alter the half-space phase value of the incident linearly polarized hyperolic-cosine-Gaussian (cosh-Gaussian) beams with sine-azimuthal variation wavefront, and focusing properties of the cosh-Gaussian beams by half space phase plate were investigated in detail. Simulation results show that focal pattern can be altered very considerably by the phase plate under condition of different beam parameters, numerical aperture, and phase parameter that indicates the phase change frequency on increasing azimuthal angle. Symmetry of the whole focal pattern can be altered remarkably, polysymmetrical focal patterns evolve into nonsymmetrical focal patterns. And some novel focal shape may appear, including cross-shape, multiple-peak focal pattern, multiple intensity lines, wheel focal pattern, swallowtail focal pattern, and dark hollow focal spots.  相似文献   

20.
Focus evolution of linearly polarized Lorentz beam with sine-azimuthal variation wavefront induced by one on-axis optical vortex was investigated theoretically in this article. Calculation results show that the focal pattern can be altered considerably by the charge number of on-axis optical vortex under condition of certain beam parameters and phase parameter that indicates the sine phase change frequency on increasing azimuthal angle. And the focal evolution principle differs remarkably for different beam parameters and the phase parameter. In focus evolution process, some novel focal patterns appear, including annular focal pattern, two-peak focal pattern, intensity lines, hexagon containing two peaks, swallowtail shape, multipede shape, and complex focal pattern. Introduction of optical vortex adds one controllable parameter to alter focal pattern, which may extend application of Lorentz beam in some focusing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号