首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on vector diffraction theory, the tight focusing properties of spirally polarized axisymmetric Bessel-modulated Gaussian beam through a dielectric interface on high numerical aperture (NA) are investigated theoretically. The optical intensity distribution in the focal region of high NA objective lens is investigated in detail by numerical calculations. The results show that the focal shift induced in the focal region is by mismatch of refractive indices across the dielectric interface. It is also found that the optical intensity in focal region of spirally polarized Quadratic Bessel Gaussian (QBG) beam can be altered considerably by changing spiral parameter C that indicates the polarization spiral degree of the incident beam.  相似文献   

2.
The focusing properties of radially polarized hollow Gaussian beam (HGB) with on-axis spiral optical vortex are investigated theoretically by vector diffraction theory. The phase wavefront of HGB is the function of radial coordinate. Calculation results show that the focusing properties can be altered considerably by beam order of HGB, topological charge of the on-axis optical vortex, and phase parameter that characterizes the radial phase wavefront distribution. Higher topological charge induces focal evolution from one focal spot to annular focal pattern in transverse direction, while phase parameter can lead to focal shift along optical axis remarkably. In addition, focal shift direction can also be adjusted by changing varying direction of phase parameter.  相似文献   

3.
Xiumin Gao  Qiufang Zhan  Jian Wang 《Optik》2011,122(6):524-528
Focusing properties of the spirally polarized axisymmetric Bessel-modulated Gaussian beam with quadratic radial dependence (QBG beam) are investigated theoretically by vector diffraction theory. Calculation results show that intensity distribution in focal region can be altered considerably by beam parameter μ and spiral parameter C that indicates polarization spiral degree. For certain real value μ, focal spot can evolve from one focal spot to one focal ring, spherical crust focal shape, then two focal rings on increasing spiral parameter C. It was found that under condition of different μ, evolution principle of focal pattern differs very remarkably on increasing C. And some novel focal shapes may appear, including rhombic shape, quadrangular shape, two-spherical crust focus shape, two-peak shape, one dark hollow focus, two dark hollow focuses pattern, triangle dark hollow focus.  相似文献   

4.
Intensity distribution in focal region plays an important role in many optical systems. In this paper, the focal patterns of higher order hyperbolic-cosine-Gaussian (HOCG) beam in focal plane were investigated. The HOCG beam contains one spiral optical vortex on its optical axis. Results show that the focal pattern can be altered considerably by beam order of the incident HOCG beam, and some novel focal patterns may occur, including foursquare focal pattern, cross-shaped dark focal focus, foursquare intensity peaks chain, and multiple intensity peaks array. Focal pattern evolution principle on increasing beam order also differs remarkably under condition of different topological charge of the optical vortex and displacement parameter associated with the cosh parts. And like topological charge and displacement parameter, the beam order and numerical aperture may affect focal pattern.  相似文献   

5.
Rui Fu  Xiumin Gao  Xiang Tang  Qing Xin  Xinmiao Lu  Lingwei Guo 《Optik》2013,124(24):6820-6826
The pure phase plate was introduced to alter the half-space phase value of the incident linearly polarized hyperolic-cosine-Gaussian (cosh-Gaussian) beams with sine-azimuthal variation wavefront, and focusing properties of the cosh-Gaussian beams by half space phase plate were investigated in detail. Simulation results show that focal pattern can be altered very considerably by the phase plate under condition of different beam parameters, numerical aperture, and phase parameter that indicates the phase change frequency on increasing azimuthal angle. Symmetry of the whole focal pattern can be altered remarkably, polysymmetrical focal patterns evolve into nonsymmetrical focal patterns. And some novel focal shape may appear, including cross-shape, multiple-peak focal pattern, multiple intensity lines, wheel focal pattern, swallowtail focal pattern, and dark hollow focal spots.  相似文献   

6.
Focusing properties of the cylindrical vector axisymmetric Bessel-modulated Gaussian beam with quadratic radial phase dependence (QBG beam) in high numerical aperture parabolic mirror system is investigated theoretically by vector diffraction theory. Results show that intensity distribution in focal region can be altered considerably by beam parameter μ and polarization angle. The tightly focused cylindrically polarized axial symmetric Bessel-modulated Gaussian beams by a high numerical aperture parabolic mirror have possible applications in particle acceleration, optical trapping and manipulating, single molecule imaging and high resolution imaging microscopy.  相似文献   

7.
Focal shift in radially polarized hollow Gaussian beam   总被引:2,自引:0,他引:2  
Xiumin Gao  Mingyu Gao  Jinsong Li  Jian Wang 《Optik》2011,122(8):671-676
Focal shift in radially polarized hollow Gaussian beam (HGB) with radial wavefront distribution is investigated theoretically. The wavefront phase distribution is cosine function of radial coordinate. Simulation results show that the intensity distribution in focal region of the radially polarized HGB can be adjusted considerably by the beam order of HGB n and cosine parameter C that indicates the phase change degree. On increasing C, focus can shift along optical axis and focal pattern changes remarkably. Focus may move in different direction under different condition. Focal shift distance fluctuates on increasing C, and fluctuation amplitude also increases simultaneously. In addition, threshold value of C for focal shift from one side to the other side of the paraxial focal plane differs for different n.  相似文献   

8.
Xiumin Gao  Jinsong Li  Jian Wang 《Optik》2010,121(18):1674-1679
Radially polarized beam has gained much interest recently due to its properties and applications. In this article, the focusing properties of radially polarized beam with radial cosine phase wavefront are investigated theoretically. Results show that when the radially polarized beam with radial cosine wavefront phase is focused, the focal pattern differs considerably with frequency parameter in the cosine function term. In the high numerical aperture focusing system, focal shift occurs, and novel focal patterns evolve considerably, for instance, from only one peak to two or multiple overlapping peaks. In addition, peak intensity ratio of radially polarized component to longitudinal polarized component in the focal region fluctuates smoothly for low-frequency parameter, then drops sharply, and comes back remarkably with increasing frequency parameter. Simultaneously focal shift increases slowly, and then decreases, suddenly, focal shift sign changes that results from focal switch phenomenon, and then fluctuates.  相似文献   

9.
Focusing properties of the azimuthally polarized axisymmetric Bessel-modulated Gaussian beam with Quadratic Bessel Gaussian (QBG beam) and annular aperture are investigated theoretically by vector diffraction theory. Simulation results show that the intensity distribution in focal region of the azimuthally polarized axisymmetric QBG beam can be shifted along optical axis considerably by changing parameter (C). On introducing annular aperture (δ), focal pattern at the focus extends along optical axis. In this paper, we have shown the generation of focal hole and focal shifting in the axial direction of incident beam propagating through aligned optical system which is suitable for application such as optical manipulation and optical trapping.  相似文献   

10.
Focusing properties of the radially polarized axisymmetric Bessel-modulated Gaussian beam with quadratic radial dependence (QBG beam) and annular aperture are investigated theoretically by vector diffraction theory. Simulation results show that the intensity distribution in the focal region of the radially polarized axisymmetric QBG beam can be adjusted considerably by small beam parameter (μ) and annular aperture (δ). When μ increases, the focal spot may change to focal hole and changes focal pattern remarkably. On introducing annular aperture, focus can split or extends along the optical axis for different μ. In this paper, we have shown the generation of the focal spot, dark focal spot, focal split and increase in focal depth in the axial direction of the incident beam propagating through the aligned optical system.  相似文献   

11.
Based on vectorial diffraction theory, the effect of annular apodization on tightly focused azimuthally polarized Bessel-modulated Gaussian beam (QBG) are investigated theoretically. The numerical results show that the intensity distribution in focal region of the incident beam can be altered considerably by changing beam parameter (μ) and introducing annular apodization (δ). Beam parameter induces the focal splitting in transverse direction, while annular apodization leads to change in focal pattern along optical axis of the focusing system. More interesting, the focal splitting may be in continuous in certain case of incident beam propagating through aligned optical system which is suitable for application such as optical manipulation and optical trapping.  相似文献   

12.
Focus evolution of linearly polarized Lorentz beam with sine-azimuthal variation wavefront induced by one on-axis optical vortex was investigated theoretically in this article. Calculation results show that the focal pattern can be altered considerably by the charge number of on-axis optical vortex under condition of certain beam parameters and phase parameter that indicates the sine phase change frequency on increasing azimuthal angle. And the focal evolution principle differs remarkably for different beam parameters and the phase parameter. In focus evolution process, some novel focal patterns appear, including annular focal pattern, two-peak focal pattern, intensity lines, hexagon containing two peaks, swallowtail shape, multipede shape, and complex focal pattern. Introduction of optical vortex adds one controllable parameter to alter focal pattern, which may extend application of Lorentz beam in some focusing systems.  相似文献   

13.
By the use of the vector diffraction theory, the focusing properties of radially polarized Bessel-like beam with radial cosine wave front phase through a high numerical-aperture (NA) lens are investigated theoretically and numerically in this work. The wave front phase distribution is a cosine function of radial coordinate. Calculation results show that focus shift is considerably influenced by changing frequency parameter C and topological charge. An increase on the focus shift C, the total intensity pattern changes remarkably and it focuses along the optical propagation axis. Thus, the focal shift direction can be adjusted by the change of the frequency parameter in cosine function. In this paper, the generation of the focal spot allows an increase in focal length in the axial direction of the incident beam propagation. Under higher numerical aperture (NA = 0.95), the effect of the frequency parameter and topological charge on the focal pattern gets stronger.  相似文献   

14.
Half-space amplitude modulation was introduced into the linearly polarized cosh-Gaussian beams with sine-azimuthal variation wavefront, and corresponding tunable focal patterns were investigated in detail. Simulation results show that focal pattern can be changed remarkably by the amplitude modulation. And under condition of different beam parameters and phase parameter that indicates the sine-azimuthal variation wavefront, the focal pattern evolution also differs considerably. Some novel focal shape may appear, including cross-shape, multiple-peak focal pattern, multiple intensity lines, wheel focal pattern, bell shape, and swallowtail focal spots. Symmetry of the whole focal pattern can be altered remarkably, the whole focal pattern evolves into uniaxial symmetry about perpendicular axes for odd and even phase parameter, respectively.  相似文献   

15.
Gradient force plays an important role in optical tweezers technique. In this paper, the tunable gradient force in focal plane of the hyperbolic-cosine–Gaussian (ChG) beam is investigated numerically. The ChG beam contains one spiral vortex and one non-spiral vortex. Simulation results show that the gradient force distribution can be altered considerably by decentered parameters of ChG beam, topological number of the spiral vortex, and vortex parameter of the non-spiral vortex. Many novel gradient force patterns can occur, which means corresponding optical traps may come into being, including ring optical trap, multiple-point trap pattern, line optical trap, rectangle trap pattern, and rhombus trap pattern. In addition, force pattern evolution principle may also differ significantly.  相似文献   

16.
Focal shift in radially polarized beam with radial cosine phase wavefront are investigated theoretically by vector diffraction theory. The wavefront phase distribution is cosine function of radial coordinate. Simulation results show that when the radially polarized beam with radial cosine wavefront phase is focused, the focal pattern differs considerably with frequency parameter in the cosine function term. On increasing C, focus can shift along optical axis and focal pattern changes remarkably. Focus may move in different direction under different condition. Focal shift distance fluctuates on increasing C, and fluctuation amplitude also increases simultaneously. In addition, focal shift direction can also be adjusted by changing frequency parameter in cosine function.  相似文献   

17.
The tight focusing of spirally polarized focused vortex beams is analyzed numerically based on the vectorial Debye theory. The expressions for the electric field and the orbital angular momentum of focused beams are derived. It is shown that the intensity distribution in the focal plane is dependent on the specific spirally polarized state and the coefficient of the spiral polarization function. By presenting the phase contours of the component polarized in the radial direction, it is found that the radii of dislocation lines will increase with the increase of the power of the spirally polarization function. It is reveled that the same orbital angular momentum can be obtained for different spirally polarized state at certain distance along the propagation direction in the focal region. Besides, the orbital angular momentum distributions for different polarized states have fewer crossover points with each other for higher topological charge. The influence of the spirally polarized state on the orbital angular momentum in the focal plane is also studied.  相似文献   

18.
Focal shift of transversely polarized beams induced by cosine phase masks are investigated theoretically by vector diffraction theory. Results show that when the transversely polarized beam with radial cosine wavefront phase is focused, the focal pattern differs considerably with frequency parameter in the cosine function term. Increasing the value of frequency parameter in the cosine part of the phase mask, focal shift may occur, simultaneously, the focal shift direction may change. Moreover, by altering frequency parameter or phase variation parameter of the phase mask will change the energy distributions of maximum intensity peak and other small intensity peaks. And novel focal patterns also evolve considerably, such as from only one peak to five of multiple peaks. The tunable focal shift can be used to construct controllable optical tweezers.  相似文献   

19.
Focal shift of the radially polarized axisymmetric QBG beam with radial variance phase plate is investigated theoretically by vector diffraction theory. Axisymmetric Bessel modulated Gaussian beam with quadratic radial dependence (QBG beam) has attracted much attention recently. Calculation results show that focus shifts considerably by changing the phase parameter C that indicates the radial phase variance speed. Under condition of beam parameter μ of radially polarized axisymmetric QBG beam, there is one focal spot that shifts far away from optical aperture on increasing C. When increases the value of beam parameter, there may occur two focal peaks that also shift remarkably on increasing C.  相似文献   

20.
We study the focus shaping of tightly focused TEM11 mode cylindrically polarized Laguerre Gaussian beam with high numerical aperture lens axicon system is investigated theoretically by vector diffraction theory. The intensity pattern at the focus can be tailored by appropriately adjusting the rotation angle. We show that the high NA lens axicon system can generates a sub wavelength focal spot, focal hole, focal splitting and flat-topped focal shapes with extended depth of focus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号