首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We present the bound state solution of Schr6dinger equation in D dimensions for quadratic exponential-type potential for arbitrary l-state. We use generalized parametric Nikiforov-Uvarov method to obtain the energy levels and the corresponding eigenfunction in dosed form. We also compute the energy eigenvalues numerically.  相似文献   

2.
The pseudospin symmetry in the Makarov potential is investigated systematically by solving the Dirac equation. The analytical solution for the Makarov potential with pseudospin symmetry is obtained by Nikiforov-Uvarov (N-U) method. The eigenfunctions and eigenenergies are presented with equal mixture of vector and scalar potentials in opposite signs, for which is exact.  相似文献   

3.
The Duffin-Kemmer-Petiau equation (DKP) is studied in the presence of a pseudo-harmonic oscillatory ring-shaped potential in (1 + 3)-dimensional space-time for spin-one particles. The exact energy eigenvalues and the eigenfunctions are obtained using the Nikiforov-Uvarov method.  相似文献   

4.
Relativistic symmetries of the Dirac equation under spin and pseudo-spin symmetries are investigated and a combina- tion of Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interaction terms are considered. The energy equation is obtained by using the Nikiforov-Uvarov method and the corresponding wave functions are expressed in terms of the hypergeometric functions. The effects of the Coulomb and Yukawa tensor interactions are numerically discussed as well.  相似文献   

5.
An approximate analytical solution of the Dirac equation is obtained for the ring-shaped Woods-Saxon potential within the framework of an exponential approximation to the centrifugal term. The radial and angular parts of the equation are solved by the Nikiforov-Uvarov method. The general results obtained in this work can be reduced to the standard forms already present in the literature.  相似文献   

6.
A manifestly gauge-invariant formulation of non-relativistic quantum mechanics is applied to the case of time-dependent harmonic oscillator in the magnetic dipole approximation. A general equation for obtaining gauge-invariant transition probability amplitudes is derived.  相似文献   

7.
Using the resolution of unity composed of bosonic creation operator's eigenkets and annihilation operator's un-normalized eigenket, which is a new quantum mechanical representation in contour integration form, we derive new contour integration expression of associated Laguerre polynomials L^ρm (|z|^2) and its generalized generating function formula. A series of recursive relations regarding to L^ρm (|z|^2) are also deduced in the context of the Fock representation by algebraic method.  相似文献   

8.
On the condition of electric-LO phonon strong coupling in a parabolic quantum dot, we obtain the eigenenergy and the eigenfunctions of the ground state and the first-excited state using the variational method of Pekar type. This system in a quantum dot may be employed as a two-level quantum system-qubit. When the electron is in the superposition state of the ground state and the first-excited state, we obtain the time evolution of the electron density. The relations of the probability density of electron on the temperature and the electron-LO-phonon coupling constant and the relations of the period of oscillation on the temperature, the electron-LO-phonon coupling constant, the Coulomb binding parameter and the confinement length are derived. The results show that the probability density of electron oscillates with a period when the electron is in the superposition state of the ground and the first-excited state, and show that there are different laws that the probability density of electron and the period of oscillation change with the temperature and the electron-LO-phonon coupling constant when the temperature is lower or higher. And it is obtained that the period of oscillation decreases with increasing the Coulomb bound potential and increases with increasing the confinement length not only at lower temperatures but also at higher temperatures.  相似文献   

9.
We propose improved ring shaped like potential of the form, V(r,θ)=V(r)+(?2/2Mr2) [(βsin2θ +γcos2θ +λ)/sin θcosθ]2 and its exact solutions are presented via the Nikiforov-Uvarov method. The angle dependent part V(θ)=(?2/2Mr2) [(βsin2θ +γcos2θ +λ)/sin θcosθ]2, which is reported for the first time embodied the novel angle dependent (NAD) potential and harmonic novel angle dependent potential (HNAD) as special cases. We discuss in detail the effects of the improved ring shaped like potential on the radial parts of the spherical harmonic and Coulomb potentials.  相似文献   

10.
Based on our previous paper (Commun. Theor. Phys. 39 (2003) 417) we derive the convolution theorem of fractional Fourier transformation in the context of quantum mechanics, which seems a convenient and neat way. Generalization of this method to the complex fractional Fourier transformation case is also possible.  相似文献   

11.
We investigate the boundary vaJue problem (BVP) of a quasi-one-dimensional Gross-Pitaevskii equation with the Kronig-Penney potential (KPP) of period d, which governs a repulsive Bose-Einstein condensate. Under the zero and periodic boundary conditions, we show how to determine n exact stationary eigenstates {Rn} corresponding to different chemical potentials {μn} from the known solutions of the system. The n-th eigenstate P~ is the Jacobian elliptic function with period 2din for n = 1,2,…, and with zero points containing the potential barrier positions. So Rn is differentiable at any spatial point and R2 describes n complete wave-packets in each period of the KPP. It is revealed that one can use a laser pulse modeled by a 5 potential at site xi to manipulate the transitions from the states of {Rn} with zero Point x≠xi to the states of {Rn'} with zero Point x= Xi. The results suggest an experimental scheme for applying BEC to test the BVP and to observe the macroscopic quantum transitions.  相似文献   

12.
As the channel length of metal-oxide-semiconductor field-effect transistors (MOSFETs) scales into the nanometer regime, quantum mechanical effects are becoming more and more significant. In this work, a model for the surrounding-gate (SG) nMOSFET is developed. The SchrSdinger equation is solved analytically. Some of the solutions are verified via results obtained from simulations. It is found that the percentage of the electrons with lighter conductivity mass increases as the silicon body radius decreases, or as the gate voltage reduces, or as the temperature decreases. The eentroid of inversion-layer is driven away from the silicon-oxide interface towards the silicon body, therefore the carriers will suffer less scattering from the interface and the electrons effective mobility of the SG nMOSFETs will be enhanced.  相似文献   

13.
The ground state of the one-dimensional hard-core boson Hubbard model with a superlattice potential is studied by quantum Monte Carlo methods. We demonstrate that besides the CDW phase and the Mott insulator phase, the supersolid phase emerges due to the presence of the superlattice potential, which reflects the competition with the hopping term. We also study the densities of sublattices and have a clear idea about the distribution of the bosons on the lattice.  相似文献   

14.
On the condition of electric-LO phonon strong coupling in unsymmetrical parabolic confinement potential quantum dot (QD), we obtain the eigenenergies of the ground state and the first-excited state, the eigenfunctions of the ground state, and the first-excited state by using variational method of Pekar type. This system in QD may be employed as a two-level quantum system-qubit. When the electron is in the superposition state of the ground state and the first-excited state, we obtain the time evolution of the electron density. The relations both the probability density of electron and the period of oscillation with the electron-LO-phonon coupling strength, the confinement strengths in the xy-plane and the z-direction are discussed.  相似文献   

15.
Within the framework of the linearized field equations of gravitation, the interaction operators between a quantum mechanical system and an external gravitational field are derived from the general-covariant Klein-Gordon and Dirac equation. In the case of linearly polarized plane gravitational waves the transition probabilities for absorption and induced and spontaneous emission of gravitational radiation by a quantum mechanical harmonic oscillator are calculated with the help of the time-dependent perturbation method. The results coincide with the classical ones according to the correspondence principle.  相似文献   

16.
Considering the fractal structure of space-time, the scale relativity theory in the topological dimension DT = 2 is built. In such a conjecture, the geodesics of this space-time imply the hydrodynamic model of the quantum mechanics. Subsequently, the gauge gravitational field on a fractal space-time is given. Then, the gauge group, the gauge-covariant derivative, the strength tensor of the gauge field, the gauge-invariant Lagrangean, the field equations of the gauge potentials and the gauge energy-momentum tensor are determined. Finally, using this model, a Reissner- Nordstrom type metric is obtained.  相似文献   

17.
We consider the quantum mechanical SU(2) transformation e2λ JzJ± e-2λJz= e±2λJ± as if the meaning of squeezing with e±2λbeing squeezing parameter. By studying SU(2) operators(J±,Jz) from the point of view of squeezing we find that(J±,Jz) can also be realized in terms of 3-mode bosonic operators. Employing this realization, we find the natural representation(the eigenvectors of J+ or J-) of the 3-mode squeezing operator e2λ Jz. The idea of considering quantum SU(2) transformation as if squeezing is liable for us to obtain the new bosonic operator realization of SU(2) and new squeezing operators.  相似文献   

18.
I discuss the modification of Einstein's Theory of General Relativity based on a periodic functional approach. In this new approach, a corrected periodic gravitational coupling constant arises and plays the role of periodic damping term acting on the theory. It is found that it is achievable to have an oscillating universe dominated by dark energy and expanding aceeleratedly in time.  相似文献   

19.
20.
The effect of noise frequency on the FitzHugh–Nagumo neuron is investigated by the use of the harmonic velocity noise, which has a direct frequency parameter and no zero frequency part of the power spectrum. It is shown that the neuron has the resonance characteristic strongly responding to the noise with a certain frequency at fixed power, and there is double coherence resonance related to the frequency and the intensity. If the harmonic velocity noise lacks low frequency ingredients, there is no synchronization between the frequency of the neuron and that of the noise. Thus the low frequency part of the noise plays an important role in creating the synchronization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号