首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 130 毫秒
1.
本文研究了图的2-pebbling性质和Graham猜想.利用图的pebbling数的一些结果,我们研究了路和圈的中间图具有2-pebbling性质,从而也证明了路的中间图满足Graham猜想.  相似文献   

2.
Chung定义了图G上的一个pebbling移动是从一个顶点移走两个pebble而把其中的一个移到与其相邻的一个顶点上.连通图G的pebbling数f(G)是最小的正整数n,使得不管n个pebble如何放置在G的顶点上,总可以通过一系列的pebbling移动把一个pebble移到G的任意一个顶点上.Graham猜测对于任意的连通图G和H有f(G×H)≤f(G)f(H).作者们验证了三类二部图的2-pebbling性质以及当H为此类二部图,G为一个2-pebbling性质的图时,Graham猜想成立.  相似文献   

3.
广义友谊图乘积上的Graham pebbling猜想   总被引:1,自引:1,他引:0  
连通图G的pebbling数f(G)是最小的正整数n,使得不管n个pebble如何放置在G的顶点上,总可以通过一系列的pebbling移动把一个pebble移到图G的任意一个顶点上.Graham猜测对于任意的连通图G和H有f(G×H)≤f(G)f(H).文中证明了当H为友谊图或广义友谊图,G是一个具有2-pebbling性质的图时,Graham猜想成立.作为一个推论,文中也证明了当G和H是友谊图或广义友谊图时,Graham猜想成立.  相似文献   

4.
G的pebbling数f(G)是最小的整数n,使得不论n个pebble如何放置在G的顶点上,总可以通过一系列的pebbling移动把1个pebble移到任意一个顶点上,其中一个pebbling移动是从一个顶点处移走两个pebble而把其中的一个移到与其相邻的一个顶点上。Graham猜想对于任意的连通图G和H有f(G×H)f(G)f(H)。多扇图Fn1,n2,…,nm是指阶为n1+n2+…+nm+1的联图P1∨(Pn1∪Pn2∪…∪Pnm)。本文首先给出了多扇图的pebbling数,然后证明了多扇图Fn1,n2,…,nm具有2-pebbling性质,最后论述了对于一个多扇图和一个具有2-pebbling性质的图的乘积来说,Graham猜想是成立的。作为一个推论,当G和H都是多扇图时,Graham猜想成立。  相似文献   

5.
完全二部图乘积上的 Graham pebbling猜想   总被引:3,自引:1,他引:2       下载免费PDF全文
G的pebbling数f(G)是最小的整数n,使得不论n个pebble如何放置在G的顶点上,总可以通过一系列的pebbling移动把1个pebble移到任意一个顶点上,其中的pebbling移动是从一个顶点处移走两个pebble而把其中的一个移到与其相邻的一个顶点上. Graham猜测对于任意的连通图GHf(G×H)≤f(G)f(H).证明了对于一个完全二部图和一个具有2-pebbling性质的图来说,Graham猜想是成立的,作为一个推论,当G和H都是完全二部图时,Graham猜想成立.  相似文献   

6.
图G的Pebbling数f(G)是最小的正整数n,使得不论n个Pebble如何放置在G的顶点上,总可以通过一系列的Pebbling移动把1个Pebble移到任意一点上,其中Pebbling移动是从一个顶点处移走两个Pebble而把其中一个移到与其相邻的一个顶点上.Graham猜测对于任意的连通图G和H有f(G×H)≤f(G)f(H).本文证明对于一个完全γ部图和一个具有2-Pebbleing性质的图来说,Graham猜想成立.作为一个推论,当G和H均为完全γ部图时,Graham猜想成立.  相似文献   

7.
图G的Pebbling数f(G)是最小的正整数n,使得不论n个Pebble如何放置在G的顶点上,总可以通过一系列的Pebbling移动把1个Pebble移到任意一点上,其中Pebbling移动是从一个顶点处移走两个Pebble而把其中一个移到与其相邻的一个顶点上.Graham猜测对于任意的连通图G和H有f(G×H)≤f(G)f(H).本文证明对于一个完全γ部图和一个具有2-Pebbleing性质的图来说,Graham猜想成立.作为一个推论,当G和H均为完全γ部图时,Graham猜想成立.  相似文献   

8.
图G的一个pebbling移动是从一个顶点移走2个pebble, 而把其中的1个pebble移到与其相邻的一个顶点上. 图G 的pebbling数f(G)是最小的正整数n, 使得不论n个pebble 如何放置在G的顶点上, 总可以通过一系列的pebbling移动, 把1个pebble移到图G的任意一个顶点上. 图G 的中间图M(G) 就是在G 的每一条边上插入一个新点, 再把G 上相邻边上的新点用一条边连接起来的图. 对于任意两个连通图G和H, Graham猜测f(G\times H)\leq f(G)f(H). 首先研究了圈的中间图的pebbling 数, 然后讨论了一些圈的中间图满足Graham猜想.  相似文献   

9.
图G的Pebbling数f(G)是最小的正整数n,使得不论n个Pebble如何放置在G的顶点上,总可以通过一系列的Pebbling移动把1个Pebble移到任意一点上,其中Pebbling移动是从一个顶点处移走两个Pebble而把其中一个移到与其相邻的一个顶点上。Graham猜测对于任意的连通图G和H有f(G×H)≤f(G)f(H)。本文证明对于一个完全r部图和一个具有2-Pebbleing性质的图来说,Graham猜想成立。作为一个推论,当G和H均为完全r部图时,Graham猜想成立。  相似文献   

10.
算术图的若干性质   总被引:1,自引:0,他引:1  
本文得到了算术图的一些新性质,并解决了文[1]提出的两个猜想.  相似文献   

11.
t-Pebbling and Extensions   总被引:1,自引:0,他引:1  
Graph pebbling is the study of moving discrete pebbles from certain initial distributions on the vertices of a graph to various target distributions via pebbling moves. A pebbling move removes two pebbles from a vertex and places one pebble on one of its neighbors (losing the other as a toll). For t ≥ 1 the t-pebbling number of a graph is the minimum number of pebbles necessary so that from any initial distribution of them it is possible to move t pebbles to any vertex. We provide the best possible upper bound on the t-pebbling number of a diameter two graph, proving a conjecture of Curtis et al., in the process. We also give a linear time (in the number of edges) algorithm to t-pebble such graphs, as well as a quartic time (in the number of vertices) algorithm to compute the pebbling number of such graphs, improving the best known result of Bekmetjev and Cusack. Furthermore, we show that, for complete graphs, cycles, trees, and cubes, we can allow the target to be any distribution of t pebbles without increasing the corresponding t-pebbling numbers; we conjecture that this behavior holds for all graphs. Finally, we explore fractional and optimal fractional versions of pebbling, proving the fractional pebbling number conjecture of Hurlbert and using linear optimization to reveal results on the optimal fractional pebbling number of vertex-transitive graphs.  相似文献   

12.
In this paper we introduce the concept of fair reception of a graph which is related to its domination number. We prove that all graphs G with a fair reception of size γ(G) satisfy Vizing's conjecture on the domination number of Cartesian product graphs, by which we extend the well‐known result of Barcalkin and German concerning decomposable graphs. Combining our concept with a result of Aharoni, Berger and Ziv, we obtain an alternative proof of the theorem of Aharoni and Szabó that chordal graphs satisfy Vizing's conjecture. A new infinite family of graphs that satisfy Vizing's conjecture is also presented. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 45‐54, 2009  相似文献   

13.
Steinberg猜想既没有4-圈又没有5-圈的平面图是3色可染的. Xu, Borodin等人各自独立地证明了既没有相邻三角形又没有5-和7-圈的平面图是3 色可染的. 作为这一结果的推论, 没有4-, 5-和7-圈的平面图是3色可染的. 本文证明一个比此推论更接近Steinberg猜想的结果, 设G是一个既没有4-圈又没有5-圈的平面图, 若对每一个k∈{3, 6, 7}, G都不含(k, 7)-弦, 则G是3色可染的, 这里的(k, 7)-弦是指长度为7+k-2的圈的一条弦, 它的两个端点将圈分成两条路, 一条路的长度为6, 另一条路的长度为k-1.  相似文献   

14.
Chung defined a pebbling move on a graph G to be the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. The pebbling number of a connected graph is the smallest number f(G) such that any distribution of f(G) pebbles on G allows one pebble to be moved to any specified, but arbitrary vertex by a sequence of pebbling moves. Graham conjectured that for any connected graphs G and H, f(G×H)≤ f(G)f(H). We prove Graham's conjecture when G is a cycle for a variety of graphs H, including all cycles. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 141–154, 2003  相似文献   

15.
Vizing's conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this paper we survey the approaches to this central conjecture from domination theory and give some new results along the way. For instance, several new properties of a minimal counterexample to the conjecture are obtained and a lower bound for the domination number is proved for products of claw‐free graphs with arbitrary graphs. Open problems, questions and related conjectures are discussed throughout the paper. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 46–76, 2012  相似文献   

16.
Results of Lovász (1972) and Padberg (1974) imply that partitionable graphs contain all the potential counterexamples to Berge's famous Strong Perfect Graph Conjecture. A recursive method of generating partitionable graphs was suggested by Chvátal, Graham, Perold, and Whitesides (1979). Results of Seb? (1996) entail that Berge's conjecture holds for all the partitionable graphs obtained by this method. Here we suggest a more general recursion. Computer experiments show that it generates all the partitionable graphs with ω=3,α ≤ 9 (and we conjecture that the same will hold for bigger α, too) and many but not all for (ω,α)=(4,4) and (4,5). Here, α and ω are respectively the clique and stability numbers of a partitionable graph, that is the numbers of vertices in its maximum cliques and stable sets. All the partitionable graphs generated by our method contain a critical ω‐clique, that is an ω‐clique which intersects only 2ω?2 other ω‐cliques. This property might imply that in our class there are no counterexamples to Berge's conjecture (cf. Seb? (1996)), however this question is still open. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 259–285, 2002  相似文献   

17.
Kotzig asked in 1979 what are necessary and sufficient conditions for a d‐regular simple graph to admit a decomposition into paths of length d for odd d>3. For cubic graphs, the existence of a 1‐factor is both necessary and sufficient. Even more, each 1‐factor is extendable to a decomposition of the graph into paths of length 3 where the middle edges of the paths coincide with the 1‐factor. We conjecture that existence of a 1‐factor is indeed a sufficient condition for Kotzig's problem. For general odd regular graphs, most 1‐factors appear to be extendable and we show that for the family of simple 5‐regular graphs with no cycles of length 4, all 1‐factors are extendable. However, for d>3 we found infinite families of d‐regular simple graphs with non‐extendable 1‐factors. Few authors have studied the decompositions of general regular graphs. We present examples and open problems; in particular, we conjecture that in planar 5‐regular graphs all 1‐factors are extendable. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 114–128, 2010  相似文献   

18.
Hadwiger's conjecture states that every graph with chromatic number χ has a clique minor of size χ. In this paper we prove a weakened version of this conjecture for the class of claw‐free graphs (graphs that do not have a vertex with three pairwise nonadjacent neighbors). Our main result is that a claw‐free graph with chromatic number χ has a clique minor of size $\lceil\frac{2}{3}\chi\rceil$. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 259–278, 2010  相似文献   

19.
The second author's (B.A.R.) ω, Δ, χ conjecture proposes that every graph satisfies . In this article, we prove that the conjecture holds for all claw‐free graphs. Our approach uses the structure theorem of Chudnovsky and Seymour. Along the way, we discuss a stronger local conjecture, and prove that it holds for claw‐free graphs with a three‐colorable complement. To prove our results, we introduce a very useful χ‐preserving reduction on homogeneous pairs of cliques, and thus restrict our view to so‐called skeletal graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号