首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
We applied periodic density-functional theory to investigate the adsorption of HCN on x Ni@Pt(111) bimetallic surfaces(x = 1~4). The results have been compared with those obtained on pure Ni(111) and Pt(111) surfaces. For all bimetallic surfaces,HCN is preferentially tilted with the CN bond parallel to the surface,and adsorption energies increase with an increasing number of layer Ni atoms on the surface. The adsorption energies of HCN on all bimetallic surfaces are larger than that on the Pt(111) surface,whereas the adsorption energies of HCN on 3Ni@Pt(111) and 4Ni@Pt(111) are larger than that on the Ni(111) surface,indicating that the introduction of Ni to the Pt catalyst could increase the activity of bimetallic catalyst in the hydrogenation reaction for nitriles. Larger adsorption energy of HCN leads to a longer C–N bond length and a smaller CN vibrational frequency. The analysis of Bader charge and vibrational frequencies showed obvious weakening of the adsorbed C–N bond and an indication of sp2 hybridization of both carbon and nitrogen atoms.  相似文献   

2.
Carbon dioxide adsorbed on different kinds of CaO surfaces has been investigated with the help of the first principle density functional theory plane wave calculations. Various possible configurations have been considered and the calculated results showed that CO2 was strongly adsorbed by C atom bonded with the CaO (001) and (110) surfaces with adsorption energies of 1.38 and 3.22 eV, respectively. The adsorption of CO2 molecule on defect surfaces is complicated compared with that on the pristine surfaces. The adsorption energy of CO2 absorbed on the CaO(110) surface is larger than that of CaO(001) surface when the type of defect surface is the same.  相似文献   

3.
The adsorption of cyanide on the top site of a series of transition metal M(100) (M = Cu, Ag, Au, Ni, Pd, Pt) surfaces via carbon and nitrogen atoms respectively, with the CN axis perpendicular to the surface, has been studied by means of density functional theory and cluster model. Geometry, adsorption energy and vibrational frequencies have been determined, and the present calculations show that the adsorption of CN through C-end on metal surface is more favorable than that via N-end for the same surface. The vibrational frequencies of CN for C-down configuration on surface are blue-shifted with respect to the free CN, which is contrary to the change of vibrational frequencies when CN is adsorbed by N-down structure. Furthermore, the charge transfer from surface to CN causes the increase of surface work function.  相似文献   

4.
Bioremediation has been a considerable method for treating Cr(VI) contamination. Bacterial surface changes of Ochrobactrum anthropi during Cr biosorption was investigated in this study. We found that Cr adsorption capacity increased with the increase of initial Cr(Ⅵ) concentration. Atomic force microscope (AFM) morphologic analysis combined with surface roughness analysis indicated that the bacterial surfaces became rougher during Cr uptake process. X-ray photoelectron spectroscopy (XPS) showed that Cr(Ⅲ) was adsorbed on the bacterial surfaces. Fourier transform infrared (FT-IR) analysis showed that surface functional groups including C-O and C-N might be involved in the Cr biosorption process.  相似文献   

5.
A theoretical study was carried out on the adsorption of hydrocyanic acid on small Aun (n ≤ 7) clusters using density functional methods. For HCN adsorption on gold clusters, no dependence was found with respect to the even-odd alternation in relation to the number of gold atoms in the cluster. The HCN molecule is adsorbed at simple adsorption sites (1-fold coordination), perpendicular to the adsorption site. The largest adsorption energy is only about 74.61 kJ·mol^-1, which indicates that the HCN molecule does not decompose and the C-N bond retains triple bond, and that the C-H and C-N stretching frequencies are only weakly perturbed. The adsorbed C-N and C-H stretching frequencies are blue- and red-shifted compared with the values of free HCN, respectively.  相似文献   

6.
The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the methanol adsorption on the Pt-Mo(111)/C surface.The adsorption energies,equilibrium geometries and vibration frequencies of CH3OH on nine types of sites on the Pt-Mo(111)/C surface were predicted and the favorite adsorption site for methanol is the top-Pt site.Both sites of valence and conduction bands of doped system have been broadened,which are favorable for electrons to transfer to the cavity.The possible decomposition pathway was investigated with transition state searching and the calculation results indicate that the O-H bond is first broken,and then the methanol decomposes into methoxy.The activation barrier of O-H bond breaking with Pt-Mo catalyst is only 104.8 kJ mol-1,showing that carbon supported Pt-Mo alloys have promoted the decomposition of methanol.Comparing with the adsorption energies of CH3OH on the Pt(111)/C surface and that of CO,the adsorption energies of CO are higher,and Pt(111)/C is liable to be oxidized and loses the activity,which suggests that the catalyst Pt-Mo(111)/C is in favor of decomposing methanol and has better anti-poisoning ability than Pt(111)/C.  相似文献   

7.
The initial decomposition of methylamine on Mo(100) surface has been investigated by self-consistent (GGA-PW91) density functional theory combined with periodic slab model. The adsorption energies of possible species and the activation energies for possible elementary reactions involved are obtained in the present work. Our results indicate that the barriers decreased with the order of C-N>N-H>C-H. In addition, metastable adsorption of the abstracted hydrogen atom on the hollow site in the final state is also considered for the N-H and C-H bond breaking. For the C-H bond cleavage, the reaction barrier that the abstracted hydrogen located on the hollow site in the final state is lower than that on the bridge site. However, for the N H bond breaking, the barriers are alike for the abstracted hydrogen on both hollow and bridge sites in the final state.  相似文献   

8.
吴奇 《高分子科学》2014,(11):1575-1580
The captioned question has been addressed by the steric effect; namely, the adsorption of proteins on a surface grafted with linear polymer chains decreases monotonically as the grafting density increases. However, there is no quantitative and satisfactory explanation why the adsorption starts to increase when the grafting density is sufficiently high and why polyethylene glycol(PEG) still remains as one of the best polymers to repel proteins. After considering each grafted chain as a molecular spring confined inside a "tube" made of its surrounding grafted chains, we estimated how its free energy depends on the grafting density and chain length, and calculated its thermal energy-agitated chain conformation fluctuation, enabling us to predict an adsorption minimum at a proper grafting density, which agrees well with previous experimental results. We propose that it is such a chain fluctuation that slows down the adsorption kinetically.  相似文献   

9.
Density functional theory (DFT) B3LYP method is used to theoretically investigate the adsorption conformations of H2O and glycol on the relaxation surface of β-Si3N4(0001) with cluster models. For H2O, the most stable structure is that adsorbed through the H atom lying above a N(3) site of the relaxation surface of β-Si3N4(0001); while for glycol, it is the one adsorbed via the H atom lying above the center of Si(2) and N(3) of the same relaxation surface. The adsorption energy, adsorption bond and transfer electrons of the two adsorbed substances prove that glycol is easy to be adsorbed on the relaxation surface of β-Si3N4(0001).  相似文献   

10.
11.
The adsorption of poly(acrylic acid) (PAA) in aqueous suspension onto the surface of TiO(2) nanoparticles was investigated. FTIR spectroscopic data provided evidence in support of hydrogen bonding and chemical interaction in the case of the PAA-TiO(2) system. Adsorption isotherms demonstrated that part of the PAA initially added to the suspension was adsorbed onto the TiO(2) surface, after which there was a gradual attainment of an adsorption plateau. The adsorption density of PAA was found to increase with an increase of PAA molecular weight, while it decreased with an increase of pH. The thickness of the PAA adsorption layer was calculated based on measurements of suspension viscosities in the absence and presence of PAA. It was shown that the thickness of the adsorption layer increased with the increase of pH, PAA molecular weight, and its concentration. The surface charge density, the diffuse charge density, and the zeta potential of TiO(2) varied distinctly after PAA adsorption. The shift of pH(iep) toward a lower pH value was observed in the presence of PAA. PAA was found to stabilize the suspension of TiO(2) nanoparticles through electrosteric repulsion. The influence of factors such as PAA molecular weight and its concentration on the colloidal stability of the aqueous suspension was also investigated.  相似文献   

12.
We investigate the interaction between water molecules and gold nanoclusters Au(n) through a systematic density functional theory study within both the generalized gradient approximation and the nonlocal van der Waals (vdW) density functional theory. Both planar (n = 6-12) and three-dimensional (3D) clusters (n = 17-20) are studied. We find that applying vdW density functional theory leads to an increase in the Au-Au bond length and a decrease in the cohesive energy for all clusters studied. We classify water adsorption on nanoclusters according to the corner, edge, and surface adsorption geometries. In both corner and edge adsorptions, water molecule approaches the cluster through the O atom. For planar clusters, surface adsorption occurs in a O-up/H-down geometry with water plane oriented nearly perpendicular to the cluster. For 3D clusters, water instead favors a near-flat surface adsorption geometry with the water O atom sitting nearly atop a surface Au atom, in agreement with previous study on bulk surfaces. Including vdW interaction increases the adsorption energy for the weak surface adsorption but reduces the adsorption energy for the strong corner adsorption due to increased water-cluster bond length. By analyzing the adsorption induced charge rearrangement through Bader's charge partitioning and electron density difference and the orbital interaction through the projected density of states, we conclude that the bonding between water and gold nanocluster is determined by an interplay between electrostatic interaction and covalent interaction involving both the water lone-pair and in-plane orbitals and the gold 5d and 6s orbitals. Including vdW interaction does not change qualitatively the physical picture but does change quantitatively the adsorption structure due to the fluxionality of gold nanoclusters.  相似文献   

13.
借助分子模拟手段,研究了锶掺杂对氧化钙表面甲醇吸附行为的影响。构建了甲醇在CaO(100)和CaO(100)-Sr表面吸附的模型,计算了甲醇在氧化钙表面的吸附能和解离活化能,分析了甲醇在氧化钙表面成键的态密度以及锶掺杂前后甲醇在氧化钙表面电荷布局和差分电荷密度,评估了锶掺杂量对氧化钙表面甲醇吸附性能的影响。结果表明,锶掺杂能够显著强化氧化钙对甲醇的吸附性能,降低甲醇的解离活化能,且吸附性能随锶掺杂量的增加而增强;甲醇在氧化钙表面吸附时活化,锶掺杂后活化程度增加。  相似文献   

14.
吴奇 《高分子科学》1999,(6):595-601
The adsorption of linear poly(N-isopropylacrylamide) (PNIPAM) chains on surfactant-freepolystyrene (PS) nanoparticles was used as a model system to study the hydrophobic adsorption of polymeron the surface, because the hydrophobility of PNIPAM can be continuously varied by a small temperaturechange. The adsorption was investigated by a combination of static and dynamic laser light scattering (LLS)measurements, In static LLS, the absolute excess scattered light intensity led to the amount of PNIPAMadsorbed on the surface. In dynamic LLS, the hydrodynamic thickness of the adsorbed PNIPAM layer wasaccurately measured. For a given particle concentration, the adsorption increases as thc PNIPAMconcentration and the incubation temperature increase. The average density of the adsorbed PNIPAM layer isreciprocally proportional to the number of the PNIPAM chains on the surface, revealing a simple scaling ofthe chain density distribution. The adsorption follows the Langmuir's isotherm. The enthalpy changeestimated from the adsorption at 25℃and 30℃is slightly positive, indicating that the adsorption involvesthe coil-to-globule transition of the chains on the surface.  相似文献   

15.
基于密度泛函理论(DFT)的第一性原理赝势法, 对MgF2(010)面及吸附Ag的构型进行了优化, 并计算了MgF2(010)面吸附Ag体系的吸附能、 电子结构和光学性能. 结果表明, MgF2(010)面能隙低于体相, 态密度分裂, 出现表面态. Ag在MgF2(010)面的吸附属于稳定的化学吸附, 最佳吸附位为最外层F的四重穴位. 吸附机理主要表现为Ag的4p轨道与第二层的Mg的2p和3s轨道之间发生相互作用, 有少量电荷从Ag向Mg迁移. 吸附Ag后, 可见光波段的光吸收增加, Ag吸附后将使体系在可见光波段出现吸收峰.  相似文献   

16.
We have investigated the adsorption of nine different adatoms on the (111) and (100) surfaces of Iridium (Ir) using first principles density functional theory. The study explores surface functionalization of Ir which would provide important information for further study of its functionality in catalysis and other surface applications. The adsorption energy, stable geometry, density of states and magnetic moment are some of the physical quantities of our interest. The study reveals that the three-/four- fold hollow site is energetically the most favorable adsorption site on the (111)/(100) surface of Ir. The investigation on a wide range of coverages (from 0.04 to 1 monolayer) reveals the strong coverage dependence of adsorption energy of the adsorbate atoms. The adsorption energy is found to increase as the coverage increases, implying a repulsive interaction between the adsorbates. Strong hybridization between the adsorbates and the substrate electronic states is revealed to impact the adsorption, while the magnetic moment of the adsorbates is found to be suppressed. The Bader analysis reveals significant amount of charge transfers between the adsorbate atoms and the substrate. The binding of adsorbate atoms on the (100) surface is observed to be moderately stronger as compared to that on the (111) surface.  相似文献   

17.
《Solid State Sciences》2012,14(10):1480-1485
First-principles density-functional theory has been used to investigate the adsorptions of Ge on Ag(111) surfaces for a wide range of coverage. Preferred adsorption sites, adsorption energies, surface structures, and the electronic properties are studied. Our results show that adsorption on the surface in fcc- sites is energetically favorable. The adsorption energies decrease as increasing Ge atoms, while the work functions of Ag surface decrease. The contour maps of the difference charge show that there exists covalent bonding in lower coverage systems to some extent for Ge on Ag(111) surface, and the interaction of Ge and Ag atoms becomes weaker with the increase of adsorption degree. The calculated density of states indicates that the adsorption structures have metallic character, while the number of electron transition is small and the interaction is not strong between Ge and Ag atoms.  相似文献   

18.
In the construction of an electrode-separated piezoelectric sensor (ESPS), the quartz surface is in direct contact with the liquid phase. The negatively charged quartz crystal surface can adsorb cationic starch. This adsorption process was in situ monitored from the frequency shift of the ESPS. It was shown that the adsorption of cationic starch onto the quartz surface is reversible with respect the dilution of the bulk phase. The adsorption behavior can be described by Langmuir model. The adsorption density and kinetics parameters were estimated from the frequency responses of the ESPS. The influence of pH and ionic strength on adsorption parameters was investigated. It was shown that the influence of pH on the adsorption rate was slight. With increasing ionic strength, the rate constants for adsorption and desorption increase, but the adsorption equilibrium constant and saturation adsorption density decrease. The adsorption equilibrium constant and adsorption density reach a maximum in buffer of pH 10.  相似文献   

19.
Ca2+ cations were generally added to facilitate the coagulation of stable fine clay mineral dispersion due to the specific adsorption of their first hydrolysis CaOH+ species at pH near 10. The adsorption of CaOH+ on dry and hydrated (001) basal surface and (010) surface of Na‐montmorillonite was investigated by using density functional theory method combined with the periodic slab model method. The adsorption energies and geometries, Mulliken charge, electron density difference, and density of state were presented and discussed. It was found that the adsorption energy of CaOH+ on (010) edge surface of Na‐montmorillonite (?328.8 kJ/mol) was much larger than that (?126.9 kJ/mol) on (001) basal surface. The presence of waters could increase the adsorption energy of CaOH+ on (001) surface but affect that on (010) surface slightly. The protons in Si–OH and Al–OH2 groups as well as the OH2 ligands in Al–OH2 group on (010) edge surface were easily dissociated and coordinated to CaOH+ to form new waters. CaOH+ was the most steady adsorption species among CaOH+, Ca2+ cation, and H2O molecule on both (001) and (010) surfaces. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Polyurethanes were modified using monobenzyloxy polyethylene glycol (BPEG) which possesses a bulky hydrophobic benzyloxy group at one end and a hydroxyl group at the other end as a preconstructed BPEG layer, and poly(ethylene glycol) (PEG) and monomethoxyl poly(ethylene glycol) (MPEG) with various chain lengths as fillers. Our objective was to investigate the effect of PEG graft density and conformation on protein adsorption at PEGlated surface. The graft density was estimated by a chemical titration method. The combination of ATR-FTIR, AFM and titration results provide evidences that the graft density can be increased by backfilling PEG or MPEG to a BPEG layer. However, fibrinogen and albumin adsorption significantly increased on all surfaces after PEG or MPEG backfilling. We conclude that the conformation of hydrophobic benzyloxy end groups of the BPEG layer plays a key role. The benzyloxy end groups of preconstructed PEG chains stretch to the surface after PEG backfilling, which possibly accounts for the observed increase in protein adsorption. The BPEG conformation change after backfilling with PEG or MPEG was also suggested by contact angles. Additionally, protein adsorption was slightly influenced by the length of filler, suggesting a change in surface morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号