首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sodium‐ion storage properties of FeS–reduced graphene oxide (rGO) and Fe3O4‐rGO composite powders with crumpled structures have been studied. The Fe3O4‐rGO composite powder, prepared by one‐pot spray pyrolysis, could be transformed to an FeS‐rGO composite powder through a simple sulfidation treatment. The mean size of the Fe3O4 nanocrystals in the Fe3O4‐rGO composite powder was 4.4 nm. After sulfidation, FeS nanocrystals of size several hundred nanometers were confined within the crumpled structure of the rGO matrix. The initial discharge capacities of the FeS‐rGO and Fe3O4‐rGO composite powders were 740 and 442 mA h g?1, and their initial charge capacities were 530 and 165 mA h g?1, respectively. The discharge capacities of the FeS‐rGO and Fe3O4‐rGO composite powders at the 50th cycle were 547 and 150 mA h g?1, respectively. The FeS‐rGO composite powder showed superior sodium‐ion storage performance compared to the Fe3O4‐rGO composite powder.  相似文献   

2.
The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self‐assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well‐controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet‐immersion method, transition‐metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three‐dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium‐ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra‐high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4–graphene composites can deliver a reversible specific capacity of 1427.5 mAh g?1 at a high current density of 1000 mA g?1 as anode materials in lithium‐ion batteries. Furthermore, nanoporous Co3O4–graphene composites achieved a high supercapacitance of 424.2 F g?1. This work demonstrated that the as‐developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications.  相似文献   

3.
The electrode materials with hollow structure and/or graphene coating are expected to exhibit outstanding electrochemical performances in energy‐storage systems. 2D graphene‐wrapped hollow C/Fe3O4 microspheres are rationally designed and fabricated by a novel facile and scalable strategy. The core@double‐shell structure SPS@FeOOH@GO (SPS: sulfonated polystyrene, GO: graphene oxide) microspheres are first prepared through a simple one‐pot approach and then transformed into C/Fe3O4@G (G: graphene) after calcination at 500 °C in Ar. During calcination, the Kirkendall effect resulting from the diffusion/reaction of SPS‐derived carbon and FeOOH leads to the formation of hollow structure carbon with Fe3O4 nanoparticles embedded in it. In the rationally constructed architecture of C/Fe3O4@G, the strongly coupled C/Fe3O4 hollow microspheres are further anchored onto 2D graphene networks, achieving a strong synergetic effect between carbon, Fe3O4, and graphene. As an anode material of Li‐ion batteries (LIBs), C/Fe3O4@G manifests a high reversible capacity, excellent rate behavior, and outstanding long‐term cycling performance (1208 mAh g?1 after 200 cycles at 100 mA g?1).  相似文献   

4.
A nanostructured Mn3O4/C electrode was prepared by a one‐step polyol‐assisted pyro‐synthesis without any post‐heat treatments. The as‐prepared Mn3O4/C revealed nanostructured morphology comprised of secondary aggregates formed from carbon‐coated primary particles of average diameters ranging between 20 and 40 nm, as evidenced from the electron microscopy studies. The N2 adsorption studies reveal a hierarchical porous feature in the nanostructured electrode. The nanostructured morphology appears to be related to the present rapid combustion strategy. The nanostructured porous Mn3O4/C electrode demonstrated impressive electrode properties with reversible capacities of 666 mAh g?1 at a current density of 33 mA g?1, good capacity retentions (1141 mAh g?1 with 100 % Coulombic efficiencies at the 100th cycle), and rate capabilities (307 and 202 mAh g?1 at 528 and 1056 mA g?1, respectively) when tested as an anode for lithium‐ion battery applications.  相似文献   

5.
A composite of highly dispersed Fe3O4 nanoparticles (NPs) anchored in three‐dimensional hierarchical porous carbon networks (Fe3O4/3DHPC) as an anode material for lithium‐ion batteries (LIBs) was prepared by means of a deposition technique assisted by a supercritical carbon dioxide (scCO2)‐expanded ethanol solution. The as‐synthesized Fe3O4/3DHPC composite exhibits a bimodal porous 3D architecture with mutually connected 3.7 nm mesopores defined in the macroporous wall on which a layer of small and uniform Fe3O4 NPs was closely coated. As an anode material for LIBs, the Fe3O4/3DHPC composite with 79 wt % Fe3O4 (Fe3O4/3DHPC‐79) delivered a high reversible capacity of 1462 mA h g?1 after 100 cycles at a current density of 100 mA g?1, and maintained good high‐rate performance (728, 507, and 239 mA h g?1 at 1, 2, and 5 C, respectively). Moreover, it showed excellent long‐term cycling performance at high current densities, 1 and 2 A g?1. The enhanced lithium‐storage behavior can be attributed to the synergistic effect of the porous support and the homogeneous Fe3O4 NPs. More importantly, this straightforward, highly efficient, and green synthetic route will definitely enrich the methodologies for the fabrication of carbon‐based transition‐metal oxide composites, and provide great potential materials for additional applications in supercapacitors, sensors, and catalyses.  相似文献   

6.
Nanofibers composed of hollow CoFe2O4 nanospheres covered with onion‐like carbon are prepared by applying nanoscale Kirkendall diffusion to the electrospinning process. Amorphous carbon nanofibers embedded with CoFe2@onion‐like carbon nanospheres are prepared by reduction of the electrospun nanofibers. Oxidation of the CoFe2‐C nanofibers at 300 °C under a normal atmosphere produces porous nanofibers composed of hollow CoFe2O4 nanospheres covered with onion‐like carbon. CoFe2 nanocrystals are transformed into the hollow CoFe2O4 nanospheres during oxidation through a well‐known nanoscale Kirkendall diffusion process. The discharge capacities of the carbon‐free CoFe2O4 nanofibers composed of hollow nanospheres and the nanofibers composed of hollow CoFe2O4 nanospheres covered with onion‐like carbon are 340 and 930 mA h g?1, respectively, for the 1000th cycle at a current density of 1 A g?1. The nanofibers composed of hollow CoFe2O4 nanospheres covered with onion‐like carbon exhibit an excellent rate performance even in the absence of conductive materials.  相似文献   

7.
While great progress has been achieved in the synthesis of ordered mesoporous carbons in the past decade, it still remains a challenge to prepare highly graphitic frameworks with ordered mesoporosity and high surface area. Reported herein is a simple synthetic methodology, based on the conversion of self‐assembled superlattices of Fe3O4 nanocrystals, to fabricate highly ordered mesoporous graphene frameworks (MGFs) with ultrathin pore walls consisting of three to six stacking graphene layers. The MGFs possess face‐centered‐cubic symmetry with interconnected mesoporosity, tunable pore width, and high surface area. Because of their unique architectures and superior structural durability, the MGFs exhibit excellent cycling stability and rate performance when used as anode materials for lithium‐ion batteries, thus retaining a specific capacity of 520 mAh g?1 at a current density of 300 mA g?1 after 400 cycles.  相似文献   

8.
By using carbon nanotubes (CNTs) as a shape template and glucose as a carbon precursor and structure‐directing agent, CNT@Fe3O4@C porous core/sheath coaxial nanocables have been synthesized by a simple one‐pot hydrothermal process. Neither a surfactant/ligand nor a CNT pretreatment is needed in the synthetic process. A possible growth mechanism governing the formation of this nanostructure is discussed. When used as an anode material of lithium‐ion batteries, the CNT@Fe3O4@C nanocables show significantly enhanced cycling performance, high rate capability, and high Coulombic efficiency compared with pure Fe2O3 particles and Fe3O4/CNT composites. The CNT@Fe3O4@C nanocables deliver a reversible capacity of 1290 mA h g?1 after 80 cycles at a current density of 200 mA g?1, and maintain a reversible capacity of 690 mA h g?1 after 200 cycles at a current density of 2000 mA g?1. The improved lithium storage behavior can be attributed to the synergistic effect of the high electronic conductivity support and the inner CNT/outer carbon buffering matrix.  相似文献   

9.
A simple synthetic approach for graphene‐templated nanostructured MnO2 nanowires self‐inserted with Co3O4 nanocages is proposed in this work. The Co3O4 nanocages were penetrated in situ by MnO2 nanowires. As an anode, the as‐obtained MnO2–Co3O4–RGO composite exhibits remarkable enhanced performance compared with the MnO2–RGO and Co3O4–RGO samples. The MnO2–Co3O4–RGO electrode delivers a reversible capacity of up to 577.4 mA h g?1 after 400 cycles at 500 mA g?1 and the Coulombic efficiency of MnO2–Co3O4–RGO is about 96 %.  相似文献   

10.
A carbon‐sulfur hybrid with pomegranate‐like core–shell structure, which demonstrates a high rate performance and relatively high cyclic stability, is obtained through carbonization of a carbon precursor in the presence of a sulfur precursor (FeS2) and a following oxidation of FeS2 to sulfur by HNO3. Such a structure effectively protects the sulfur and leaves enough buffer space after Fe3+ removal and, at the same time, has an interconnected conductive network. The capacity of the obtained hybrid is 450 mA h g?1 under the current density of 5 C. This work provides a simple strategy to design and prepare various high‐performance carbon‐sulfur hybrids for lithium‐sulfur batteries.  相似文献   

11.
VO2‐decorated reduced graphene balls were prepared by a one‐pot spray‐pyrolysis process from a colloidal spray solution of well‐dispersed graphene oxide and ammonium vanadate. The graphene–VO2 composite powders prepared directly by spray pyrolysis had poor electrochemical properties. Therefore, the graphene–VO2 composite powders were transformed into a reduced graphene ball (RGB)–V2O5 (RGB) composite by post‐treatment at 300 °C in an air atmosphere. The TEM and dot‐mapping images showed a uniform distribution of V and C components, originating from V2O5 and graphene, consisting the composite. The graphene content of the RGB–V2O5 composite, measured by thermogravimetric analysis, was approximately 5 wt %. The initial discharge and charge capacities of RGB–V2O5 composite were 282 and 280 mA h g?1, respectively, and the corresponding Coulombic efficiency was approximately 100 %. On the other hand, the initial discharge and charge capacities of macroporous V2O5 powders were 205 and 221 mA h g?1, respectively, and the corresponding Coulombic efficiency was approximately 93 %. The RGB–V2O5 composite showed a better rate performance than the macroporous V2O5 powders.  相似文献   

12.
A unique hybrid, TiO2–B nanosheets/anatase nanocrystals co‐anchored on nanoporous graphene sheets, can be synthesized by a facile microwave‐induced in situ reduction–hydrolysis route. The as‐formed nanohybrid has a hierarchically porous structure, involving both mesopores of approximately 4 nm and meso‐/macropores of 30–60 nm in the graphene sheets, and a large surface area. Importantly, electrodes composed of the nanohybrid exhibit superior rate capability (160 mA h g?1 at ca. 36 C; 154 mA h g?1 at ca. 72 C) and excellent cyclability. The synergistic effects of conductive graphene with numerous nanopores and the pseudocapacitive effect of ultrafine TiO2–B nanosheets and anatase nanocrystals endow the hybrid a superior rate capability.  相似文献   

13.
In this study, a method is developed to fabricate Fe3O4@C particles with a coaxial and penetrated hollow mesochannel based on the concept of “confined nanospace pyrolysis”. The synthesis involves the production of a polydopamine coating followed by a silica coating on a rod‐shaped β‐FeOOH nanoparticle, and subsequent treatment by using confined nanospace pyrolysis and silica removal procedures. Typical coaxial hollow Fe3O4@C possesses a rice‐grain morphology and mesoporous structure with a large specific surface area, as well as a continuous and flexible carbon shell. Electrochemical tests reveal that the hollow Fe3O4@C with an open‐ended nanostructure delivers a high specific capacity (ca. 864 mA h g?1 at 1 A g?1), excellent rate capability with a capacity of about 582 mA h g?1 at 2 A g?1, and a high Coulombic efficiency (>97 %). The excellent electrochemical performance benefits from the hollow cavity with an inner diameter of 18 nm and a flexible carbon shell that can accommodate the volume change of the Fe3O4 during the lithium insertion/extraction processes as well as the large specific surface area and open inner cavity to facilitate the rapid diffusion of lithium ions from electrolyte to active material. This fabrication strategy can be used to generate a hollow or porous metal oxide structure for high‐performance Li‐ion batteries.  相似文献   

14.
A facile, one‐pot method for synthesizing spherical‐like metal sulfide–reduced graphene oxide (RGO) composite powders by spray pyrolysis is reported. The direct sulfidation of ZnO nanocrystals decorated on spherical‐like RGO powders resulted in ZnS–RGO composite powders. ZnS nanocrystals with a size below 20 nm were uniformly dispersed on spherical‐like RGO balls. The discharge capacities of the ZnS–RGO, ZnO–RGO, bare ZnS, and bare ZnO powders at a current density of 1000 mA g?1 after 300 cycles were 628, 476, 230, and 168 mA h g?1, respectively, and the corresponding capacity retentions measured after the first cycles were 93, 70, 40, and 21 %, respectively. The discharge capacity of the ZnS–RGO composite powders at a high current density of 4000 mA g?1 after 700 cycles was 437 mA h g?1. The structural stability of the highly conductive ZnS–RGO composite powders with ultrafine crystals during cycling resulted in excellent electrochemical properties.  相似文献   

15.
Zn2GeO4/N‐doped graphene nanocomposites have been synthesized through a fast microwave‐assisted route on a large scale. The resulting nanohybrids are comprised of Zn2GeO4 nanorods that are well‐embedded in N‐doped graphene sheets by in situ reducing and doping. Importantly, the N‐doped graphene sheets serve as elastic networks to disperse and electrically wire together the Zn2GeO4 nanorods, thereby effectively relieving the volume‐expansion/contraction and aggregation of the nanoparticles during charge and discharge processes. We demonstrate that an electrode that is made of the as‐formed Zn2GeO4/N‐doped graphene nanocomposite exhibits high capacity (1463 mAh g?1 at a current density of 100 mA g?1), good cyclability, and excellent rate capability (531 mAh g?1 at a current density of 3200 mA g?1). Its superior lithium‐storage performance could be related to a synergistic effect of the unique nanostructured hybrid, in which the Zn2GeO4 nanorods are well‐stabilized by the high electronic conduction and flexibility of N‐doped graphene sheets. This work offers an effective strategy for the fabrication of functionalized ternary‐oxide‐based composites as high‐performance electrode materials that involve structural conversion and transformation.  相似文献   

16.
Graphitized carbon (GC) and graphene (GE) modified Fe2O3/Li4Ti5O12 (LTO) composites have been synthesized via a solid‐state reaction, respectively. The structure, morphology and electrochemical performance of the materials have also been characterized with X‐ray diffraction (XRD), scanning electron microscope (SEM) with an energy dispersive spectroscopy (EDS) system, X‐ray photoelectron spectrometer (XPS), Fourier transform infrared spectroscopy (FTIR) and electrochemical measurements. The discharge capacities of Fe2O3/LTO, GC/Fe2O3/LTO and GE/Fe2O3/LTO are 100.2 mAh g?1, 207.5 mAh g?1 and 238.9 mAh g?1 after 100 cycles at the current density of 176 mA g?1. The cyclic stability and rate capability are in the order of GE/Fe2O3/LTO > GC/Fe2O3/LTO > Fe2O3/LTO because of the synergistic effect between GC (GE) and Fe2O3/LTO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A novel design of a sodium‐ion cell is proposed based on the use of nanocrystalline thin films composed of transition metal oxides. X‐ray diffraction, Raman spectroscopy and electron microscopy were helpful techniques to unveil the microstructural properties of the pristine nanostructured electrodes. Thus, Raman spectroscopy revealed the presence of amorphous NiO, α‐Fe2O3 (hematite) and γ‐Fe2O3 (maghemite). Also, this technique allowed the calculation of an average particle size of 23.4 Å in the amorphous carbon phase in situ generated on the positive electrode. The full sodium‐ion cell performed with a reversible capacity of 100 mA h g?1 at C/2 with an output voltage of about 1.8 V, corresponding to a specific energy density of about 180 W h kg?1. These promising electrochemical performances allow these transition metal thin films obtained by electrochemical deposition to be envisaged as serious competitors for future negative electrodes in sodium‐ion batteries.  相似文献   

18.
Hierarchically structured tin oxide/reduced graphene oxide (RGO)/carbon composite powders are prepared through a one‐pot spray pyrolysis process. SnO nanoflakes of several hundred nanometers in diameter and a few nanometers in thickness are uniformly distributed over the micrometer‐sized spherical powder particles. The initial discharge and charge capacities of the tin oxide/RGO/carbon composite powders at a current density of 1000 mA g?1 are 1543 and 1060 mA h g?1, respectively. The discharge capacity of the tin oxide/RGO/carbon composite powders after 175 cycles is 844 mA h g?1, and the capacity retention measured from the second cycle is 80 %. The transformation during cycling of SnO nanoflakes, uniformly dispersed in the tin oxide/RGO/carbon composite powder, into ultrafine nanocrystals results in hollow nanovoids that act as buffers for the large volume changes that occur during cycling, thereby improving the cycling and rate performances of the tin oxide/RGO/carbon composite powders.  相似文献   

19.
Efficient and reusable nanocatalysts fabricated via a facile assembly are highly desirable for the cost‐effective hydrogenation reduction. Inspired by a fishing process with a fishnet, multifunctional nanostructured catalysts are rationally designed to combine interesting features via the self‐redox assembly of Fe3O4‐Ag composites on reduced graphene oxide (rGO) (Fe3O4‐Ag/rGO). In detail, Fe3O4 nanoparticles (NPs) endow the ternary hybrids with superparamagnetism (21.42 emu g?1), facilitating catalysts to be separated from the reaction system. rGO could provide electron transfer pathways, enhancing catalytic activity. More interestingly, GO and Ag+ could behave as oxidants to oxidize Fe2+ for the in situ assembly of Fe3O4‐Ag/rGO without any addition of reductant/oxidant or organic solvents, and AgNPs endow the ternary hybrids with excellent catalytic behaviour. Meaningfully, the bioinspired process enables the ternary hybrids to possess more abundant micro?/nanopores, larger surface area, and more amorphization. They exhibit exceptional catalytic performance, and could be recycled with excellent activity by means of convenient magnetic separation (at least 7 times). Moreover, the ternary hybrids could degrade methylene blue under UV light due to different valence states of Fe in Fe3O4. Therefore, the proposed bioinspired assembly and structure design for hierarchical catalysts would pave a promising way to assemble other catalysts.  相似文献   

20.
CoFe2O4/multiwalled carbon nanotubes (MWCNTs) hybrid materials were synthesized by a hydrothermal method. Field emission scanning electron microscopy and transmission electron microscopy analysis confirmed the morphology of the as‐prepared hybrid material resembling wintersweet flower “buds on branches”, in which CoFe2O4 nanoclusters, consisting of nanocrystals with a size of 5–10 nm, are anchored along carbon nanotubes. When applied as an anode material in lithium ion batteries, the CoFe2O4/MWCNTs hybrid material exhibited a high performance for reversible lithium storage. In particular, the hybrid anode material delivered reversible lithium storage capacities of 809, 765, 539, and 359 mA h g?1 at current densities of 180, 450, 900, and 1800 mA g?1, respectively. The superior performance of CoFe2O4/MWCNTs hybrid materials could be ascribed to the synergistic pinning effect of the wintersweet‐flower‐like nanoarchitecture. This strategy could also be applied to synthesize other metal oxide/CNTs hybrid materials as high‐capacity anode materials for lithium ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号