首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We investigate the spin dynamics of the classical two-dimensional easy-plane Heisenberg antiferromagnet with an additional Dzyaloshinsky interaction, which serves as a simple model for Langmuir-Blodgett films of Mn (C18H35O2)2. By mapping the system onto a pure easy-plane model we discuss the corresponding spin wave and vortex dynamics. The additional Dzyaloshinsky interaction forces all spins to cant in a certain direction, which is the same for neighboring spins on different sublattices. This canting causes the presence of a second spin wave peak in the dynamical in-plane correlation function below the Kosterlitz-Thouless transition temperature TKT and a second vortex central peak above TKT. Using a vortex gas approach we explicitly calculate the contribution of the free vortices to several dynamical correlation functions. These results are compared to a combined Monte Carlo-Molecular Dynamics simulation on square lattices with different sizes. We also discuss the relevance of this simple model for describing the spin dynamics of Mn (C18H35O2)2.  相似文献   

2.
The low-amplitude AC susceptibility on intact and deformed Bi2223/Ag tapes has been measured as a function of temperature, frequency, AC amplitude and DC magnetic field. The deformation resulted in the splitting of the χ″(T) peak into three peaks situated near 30, 58 and 90 K. In zero magnetic field, these temperatures were identified as the Kosterlitz–Thouless transition temperatures of low number stacks of superconducting layers. An external magnetic field redistributed the dissipation among the peaks, and moved them to lower temperatures (and suppressed the highest temperature peak). In a finite field, each peak corresponds to the stack melting temperature Tm. The melting temperature in each stack was found to be a field-dependent parameter, with a minimum value=TKT of a stack of thickness that is less by one layer. The Tm decreases exponentially with the field, and the rate of decrease depends on the interstack Josephson and magnetic interactions. With a universal set of TKT, the vortex melting line of a tape is a linear combination of the Tm(H) for the low-number stacks.  相似文献   

3.
The effect of topological excitations in the form of small size (r ≪ξ(T)) vortex rings on thermodynamics of a bulk superconductor is considered. These specific short wavelength fluctuations of the order parameter are analogous to small vortex-antivortex pairs in superconducting film which were recently studied in Y.N. Ovchinnikov, A.A. Varlamov, Phys. Rev. Lett. 94, 107007 (2004). The corresponding contribution to the free energy below Tc is calculated. It is shown that fluctuations of this type give the main temperature dependent contribution to the heat capacity of the superconductor in the sufficiently large interval of temperatures below the transition point. Important, that the sign of this contribution is opposite to that one appearing due to the usual long wavelength fluctuation, leading to smearing of the BCS jump of heat capacity.  相似文献   

4.
二维完全阻挫$lt;i$gt;XY$lt;/i$gt;模型的动力学指数   总被引:1,自引:0,他引:1       下载免费PDF全文
雷晓蔚  赵晓雨 《物理学报》2009,58(8):5661-5666
采用大规模动力学蒙特卡罗模拟方法,对二维完全阻挫XY模型的Kosterlitz-Thouless(KT)型相变展开数值研究.系统从有序初始态出发演化到高于KT相变的温度,以普适的动力学标度形式为基础,通过测量磁化和Binder累积量,得出动力学关联时间和平衡态空间关联长度,确定出更精确的动力学指数z.特别是建议并证实了一种在KT相变温度以上(T>TKT),独立判断动力学指数z的方法.模拟结果表明,动力学指数z≈2,这与在相变温度以下(T<TKT)测量的结果一致. 关键词: 蒙特卡罗法 动力学指数 Kosterlitz-Thouless相变 XY模型')" href="#">二维完全阻挫XY模型  相似文献   

5.
Orthorhombic EuPdSb is known to undergo two magnetic transitions, at 12 K and at T N≃ 18 K, and in phase III (T < 12 K), single crystal magnetisation data have shown that the spin structure is collinear antiferromagnetic, with magnetic moments along the crystal a axis. From a 151Eu M?ssbauer absorption study, we show that, at any temperature within phase III, all the moments have equal sizes, and that in phase II (12 K< T <18 K) the magnetic structure is modulated and incommensurate with the lattice spacings. The modulation is close to a pure sine-wave just below T N = 18 K, and it squares up as temperature is lowered. We measured the thermal variations of the first and third harmonics of the moment modulation, and we could determine the first and third harmonics of the exchange coupling. We furthermore show that the antiferromagnetic-incommensurate transition at 12 K is strongly first order, with a hysteresis of 0.05 K, and that the incommensurate-paramagnetic transition at 18 K is weakly first order. Finally, we present an explanation of the spin-flop transition observed in the single crystal magnetisation data in phase III when || in terms of an anisotropic molecular field tensor. Received 17 January 2001 and Received in final form 20 March 2001  相似文献   

6.
The out-of-plane dynamical correlation functionsS zz (q, ) for two-dimensional easy-plane ferro- and antiferromagnets are calculated using a diagrammatic expansion for the temperature dependent Green function. Vortex-magnon interference effects on the multimagnon and vortex contribution toS zz (q, ) are also analised, in a classical context, for ferromagnets. Our calculations show that we cannot expect multimagnon processes to contribute to a central peak (=0) that has been observed in these systems for temperaturesT>T c , whereT c is the temperature at which a topological phase transition is predicted to occur. However, vortex-magnon interactions considerably reduce the intensity of the vortex induced central peak.  相似文献   

7.
In a p-spin interaction spherical spin-glass model both the spins and the couplings are allowed to change with time. The spins are coupled to a heat bath with temperature T, while the coupling constants are coupled to a bath having temperature TJ. In an adiabatic limit (where relaxation time of the couplings is much larger that of the spins) we construct a generalized two-temperature thermodynamics. It involves entropies of the spins and the coupling constants. The application for spin-glass systems leads to a standard replica theory with a non-vanishing number of replicas, n=T/T J . For p>2 there occur at low temperatures two different glassy phases, depending on the value of n. The obtained first-order transitions have positive latent heat, and positive discontinuity of the total entropy. This is an essentially non-equilibrium effect. The dynamical phase transition exists only for n<1. For p=2 correlation of the disorder (leading to a non-zero n) removes the known marginal stability of the spin glass phase. If the observation time is very large there occurs no finite-temperature spin glass phase. In this case there are analogies with the non-equilibrium (aging) dynamics. A generalized fluctuation-dissipation relation is derived. Received 12 July 1999 and Received in final form 8 December 1999  相似文献   

8.
We compare the one-loop renormalization group flow to strong coupling of the electronic interactions in the two-dimensional t-t'-Hubbard model with t' = - 0.3t for band fillings smaller and larger than half-filling. Using a numerical N-patch scheme ( N = 32, ..., 96) we show that in the electron-doped case with decreasing electron density there is a rapid transition from a d x2 - y2-wave superconducting regime with small characteristic energy scale to an approximate nesting regime with strong antiferromagnetic tendencies and higher energy scales. This contrasts with the hole-doped side discussed recently which exhibits a broad parameter region where the renormalization group flow suggests a truncation of the Fermi surface at the saddle points. We compare the quasiparticle scattering rates obtained from the renormalization group calculation which further emphasize the differences between the two cases. Received 19 December 2000 and Received in final form 28 February 2001  相似文献   

9.
We report the results of 69Ga- and 71Ga-NMR measurements on NdGa2 at temperatures between 0.1 and and in applied magnetic fields between zero and 74 kOe. NdGa2 orders antiferromagnetically below and undergoes several metamagnetic transitions in external magnetic fields. In zero applied magnetic field and below the temperature dependence of the spin-lattice relaxation rate T1 -1 ( T ) shows a large linear-in-T term, about two orders of magnitude higher than for the reference compound LaGa2. This strong enhancement confirms the presence of low-energy excitations in the antiferromagnetic phase of NdGa2 as was previously indicated by specific heat data. Above , T1 -1 ( T ) is dominated by an exponential term, which we associate with excitations between the lowest energy levels of the f-electron system. The separation of these energy levels is determined by exchange, crystal-field and Zeeman interactions. Received 3 September 1998 and Received in final form 3 November 1998  相似文献   

10.
The phase diagram for quark matter is investigated within a simple Nambu-Jona-Lasinio model without vector correlations. It is found that the phase structure in the temperature-density plane depends sensitively on the parametrization of the model. We present two schemes of parametrization of the model where, within the first one, a first-order phase transition from a phase with broken chiral symmetry to a color superconducting phase for temperatures below the triple point at T t = 55 MeV occurs, whereas for the second one a second-order phase transition for temperatures below T t = 7 MeV is found. In the latter case, there is also a coexistence phase of broken chiral symmetry with color superconductivity, which is a new finding within this class of models. Possible consequences for the phenomenology of the QCD phase transition at high baryon densities are discussed. Received: 3 January 2003 / Accepted: 21 February 2003 / Published online: 24 April 2003  相似文献   

11.
Thermal conductivity κ xx(T) under a field is investigated in d x2 - y2-wave superconductors and isotropic s-wave superconductors by the linear response theory, using a microscopic wave function of the vortex lattice states. To study the origin of the different field dependence of κxx(T) between higher and lower temperature regions, we analyze the spatially-resolved thermal conductivity around a vortex at each temperature, which is related to the spectrum of the local density of states. We also discuss the electric conductivity in the same formulation for a comparison. Received 8 December 2001 and Received in final form 20 March 2002 Published online 6 June 2002  相似文献   

12.
We perform a comparative Monte Carlo study of the easy-plane deconfined critical point (DCP) action and its short-range counterpart to reveal close similarities between the two models for intermediate and strong coupling regimes. For weak coupling, the structure of the phase diagram depends on the interaction range: while the short-range model features a tricritical point and a continuous U(1) × U(1) transition, the long-range DCP action is characterized by the runaway renormalization flow of coupling into a first (I) order phase transition. We develop a “numerical flowgram” method for high precision studies of the runaway effect, weakly I-order transitions, and polycritical points. We prove that the easy-plane DCP action is the field theory of a weakly I-order phase transition between the valence bond solid and the easy-plane antiferromagnet (or superfluid, in particle language) for any value of the weak coupling strength. Our analysis also solves the long standing problem of what is the ultimate fate of the runaway flow to strong coupling in the theory of scalar electrodynamics in three dimensions with U(1) × U(1) symmetry of quartic interactions.  相似文献   

13.
A fireball model with time evolution based on transport calculations is used to examine the dilepton emission rate of an ultra-relativistic heavy-ion collision. A transition from hadronic matter to a quark-gluon plasma at a critical temperature T C between 130-170 MeV is assumed. We also consider a possible mixed phase scenario. We include thermal corrections to the hadronic spectra below T C and use perturbation theory above T C. The sensitivity of the spectra with respect to the freeze-out temperature, the initial fireball temperature and the critical temperature is investigated. Received: 4 August 2000 / Accepted: 14 November 2000  相似文献   

14.
15.
Second-order phase transitions in a non-equilibrium liquid-gas model with reversible mode couplings, i.e., model H for binary-fluid critical dynamics, are studied using dynamic field theory and the renormalization group. The system is driven out of equilibrium either by considering different values for the noise strengths in the Langevin equations describing the evolution of the dynamic variables (effectively placing these at different temperatures), or more generally by allowing for anisotropic noise strengths, i.e., by constraining the dynamics to be at different temperatures in d || - and d -dimensional subspaces, respectively. In the first, isotropic case, we find one infrared-stable and one unstable renormalization group fixed point. At the stable fixed point, detailed balance is dynamically restored, with the two noise strengths becoming asymptotically equal. The ensuing critical behavior is that of the standard equilibrium model H. At the novel unstable fixed point, the temperature ratio for the dynamic variables is renormalized to infinity, resulting in an effective decoupling between the two modes. We compute the critical exponents at this new fixed point to one-loop order. For model H with spatially anisotropic noise, we observe a critical softening only in the d -dimensional sector in wave vector space with lower noise temperature. The ensuing effective two-temperature model H does not have any stable fixed point in any physical dimension, at least to one-loop order. We obtain formal expressions for the novel critical exponents in a double expansion about the upper critical dimension d c = 4 - d || and with respect to d || , i.e., about the equilibrium theory. Received 4 April 2002 Published online 13 August 2002  相似文献   

16.
The molecular dynamics in thin films (18 nm-137 nm) of isotactic poly(methyl methacrylate) (i-PMMA) of two molecular weights embedded between aluminium electrodes are measured by means of dielectric spectroscopy in the frequency range from 50 mHz to 10 MHz at temperatures between 273 K and 392 K. The observed dynamics is characterized by two relaxation processes: the dynamic glass transition (α-relaxation) and a (local) secondary β-relaxation. While the latter does not depend on the dimensions of the sample, the dynamic glass transition becomes faster (≤2 decades) with decreasing film thickness. This results in a shift of the glass transition temperature T g to lower values compared to the bulk. With decreasing film thickness a broadening of the relaxation time distribution and a decrease of the dielectric strength is observed for the α-relaxation. This enables to deduce a model based on immobilized boundary layers and on a region displaying a dynamics faster than in the bulk. Additionally, T g was determined by temperature-dependent ellipsometric measurements of the thickness of films prepared on silica. These measurements yield a gradual increase of T g with decreasing film thickness. The findings concerning the different thickness dependences of T g are explained by changes of the interaction between the polymer and the substrates. A quantitative analysis of the T g shifts incorporates recently developed models to describe the glass transition in thin polymer films. Received 12 August 2001 and Received in final form 16 November 2001  相似文献   

17.
The dielectric permittivity ε - i of SrTi 18O 3 (STO18) is studied under a dc electric field E as a function of the temperature, T. In ε vs. T, a double-peak is found when 0 < E < 30 KV/m. While the peak at high-T is attributed to the smeared ferroelectric phase transition, the low-T one is induced by domain wall motion. The transverse Ising model including an external homogeneous and quenched random-fields is successfully used to describe both the smeared phase transition and the domain wall response in the low-T domain state. The calculations are in good agreement with the experimental results. Received 4 January 2002 / Received in final form 25 March 2002 Published online 19 July 2002  相似文献   

18.
We consider the competition between the one dimensionalization effect due to a magnetic field and the hopping parameters in quasi-one-dimensional conductors. Our study is based on a perturbative renormalization group method with three cut-off parameters, the bandwidth E0, the 1D-2D crossover temperature T*1, which is related to the hopping process t1, and the magnetic energy . We have found that the renormalized crossover temperatures T*1 and T*2, at which the respectively hopping processes t1 and t2 become coherent, are reduced compared to the bare values as the field is increased. We discuss the consequences of these renormalization effects on the temperature-field phase diagram of the organic conductors.Received: 5 March 2003, Published online: 23 July 2003PACS: 64.60.-i General studies of phase transitions - 75.30.Fv Spin-density waves - 72.15.Gd Galvanomagnetic and other magnetotransport effects - 74.70.Kn Organic superconductors  相似文献   

19.
We report complex impedance measurements in an untwinned YBaCuO crystal. Our broad frequency range covers both the quasi static response and the resistive response of the vortex lattice. It allow us to characterize the irreversibility line without the need of any frequency dependent pinning parameters. We confirm the validity of the two modes model of vortex dynamic, and extract both the surface critical current and the flux flow resistivity around the first order transition Tm. This latter is identified by the abrupt loss of pinning and by an unexpected step of (T) at Tm. Received 22 November 2002 / Received in final form 17 February 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: alain.pautrat@ismra.fr RID="b" ID="b"UMR 6508 associée au CNRS  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号