首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that the dynamics of disordered charge density waves (CDWs) and spin density waves (SDWs) is a collective phenomenon. The very low temperature specific heat relaxation experiments are characterized by: (i) “interrupted” ageing (meaning that there is a maximal relaxation time); and (ii) a broad power-law spectrum of relaxation times which is the signature of a collective phenomenon. We propose a random energy model that can reproduce these two observations and from which it is possible to obtain an estimate of the glass cross-over temperature (typically T g≃ 100-200 mK). The broad relaxation time spectrum can also be obtained from the solutions of two microscopic models involving randomly distributed solitons. The collective behavior is similar to domain growth dynamics in the presence of disorder and can be described by the dynamical renormalization group that was proposed recently for the one dimensional random field Ising model [D.S. Fisher, P. Le Doussal, C. Monthus, Phys. Rev. Lett. 80, 3539 (1998)]. The typical relaxation time scales like ∼τexp(T g/T). The glass cross-over temperature Tg related to correlations among solitons is equal to the average energy barrier and scales like T g∼ 2xξΔ. x is the concentration of defects, ξ the correlation length of the CDW or SDW and Δ the charge or spin gap. Received 12 December 2001  相似文献   

2.
The onset of surface fluidization of granular material in a vertically vibrated container, z = A cosωt , is studied experimentally. Recently, for a column of spheres it has been theoretically found (see T. P?schel, T. Schwager, C. Salue na, Phys. Rev. E 62, 1361 (2000)) that the particles lose contact if a certain condition for the acceleration amplitude ≡Aω2/g = f (ω) holds. This result is in disagreement with other findings where the criterion = = const was found to be the criterion of fluidization. We show that for a column of spheres a critical acceleration is not a proper criterion for fluidization and compare the results with theory. Received 21 August 2000 and Received in final form 30 October 2000  相似文献   

3.
We have calculated the real part of the nonlinear dielectric susceptibility of amorphous insulators in the kHz range, by using the two-level system model and a nonperturbative numerical quantum approach. At low temperature T, it is first shown that the standard two-level model should lead to a decrease of when the measuring field E is raised, since raising E increases the population of the upper level and induces Rabi oscillations cancelling the ones induced from the ground level. This predicted E-induced decrease of is at odds with experiments. However, a better, though still not perfect, agreement with low-frequency experimental nonlinear data is recovered if, in our fully quantum simulations, interactions between defects are taken into account by a new relaxation rate whose efficiency increases as , as was proposed recently by Burin et al. [Phys. Rev. Lett. 86, 5616 (2001)]. In this approach, the behavior of at low T is mainly explained by the efficiency of this new relaxation channel. Since a quantitative understanding of glasses is still missing, we finally discuss experiments whose results should yield a refined understanding of this new relaxation mechanism: i) a completely new nonlinear behavior should be found for samples whose thickness is ≃ 10 nm; ii) a decrease of nonequilibrium effects should be found when E is increased. Received 19 September 2002 / Received in final form 4 December 2002 Published online 14 March 2003  相似文献   

4.
On the basis of the experimental data on diffractive processes in πp, pp and pˉp collisions at intermediate, moderately high and high energies, we restore the scattering amplitude related to the t-channel exchange by vacuum quantum numbers by taking account of the diffractive s-channel rescatterings. At intermediate and moderately high energies, the t-channel exchange amplitude turns, with a good accuracy, into an effective pomeron which renders the results of the additive quark model. At superhigh energies the scattering amplitude provides a Froissart-type behaviour, with an asymptotic universality of cross sections such as σtot πptot pp→ 1 at s→∞. The quark structure of hadrons being taken into account at the level of constituent quarks, the cross sections of pion and proton (antiproton) in the impact parameter space of quarks, σπ(r 1⊥, r 2⊥; s) and σp(r 1⊥, r 2⊥, r 3⊥; s), are found as functions of s. These cross sections implicate the phenomenon of colour screening: they tend to zero at |r i⊥r k⊥|→ 0. The effective colour screening radius for pion (proton) is found for different s. The predictions for the diffractive cross sections at superhigh energies are presented. Received: 15 December 1998  相似文献   

5.
The finite size behavior of the susceptibility, Binder cumulant and some even moments of the magnetization of a fully finite O(n) cubic system of size L are analyzed and the corresponding scaling functions are derived within a field-theoretic ɛ-expansion scheme under periodic boundary conditions. We suppose a van der Waals type long-range interaction falling apart with the distance r as r - (d + σ), where 2 < σ < 4, which does not change the short-range critical exponents of the system. Despite that the system belongs to the short-range universality class it is shown that above the bulk critical temperature T c the finite-size corrections decay in a power-in-L, and not in an exponential-in-L law, which is normally believed to be a characteristic feature for such systems. Received 8 August 2001  相似文献   

6.
The finite-size critical properties of the (n) vector ϕ4 model, with long-range interaction decaying algebraically with the interparticle distance r like r -d - σ, are investigated. The system is confined to a finite geometry subject to periodic boundary condition. Special attention is paid to the finite-size correction to the bulk susceptibility above the critical temperature T c. We show that this correction has a power-law nature in the case of pure long-range interaction i.e. 0 < σ < 2 and it turns out to be exponential in case of short-range interaction i.e.σ = 2. The results are valid for arbitrary dimension d, between the lower ( d < = σ) and the upper ( d > = 2σ) critical dimensions. Received 2 July 2001 and Received in final form 4 Septembre 2001  相似文献   

7.
The relaxation of the specific heat and the entropy to their equilibrium values is investigated numerically for the three-dimensional Coulomb glass at very low temperatures. The long time relaxation follows a stretched exponential function, f (t) = f 0exp - (t/τ)β , with the exponent β increasing with the temperature. The relaxation time diverges as an Arrhenius law when T→ 0. Received 24 May 2001 and Received in final form 12 September 2001  相似文献   

8.
In this paper, the spin-dependent structure functions of nucleon g 1, and photoabsorption cross sections σ1/2, σ3/2 and σT in the resonance region are estimated based on the constituent quark model and the properties of the five phenomenological Breit-Wigner resonances P 33(1232), S 11(1535), D 13(1520), P 11(1440), and F 15(1680). Our results are compared to the recent E143 data of the polarized structure functions g 1(W 2, Q 2) at points Q 2=0.5 GeV2 and Q 2=1.2 GeV2 and the data of the total inclusive photoabsorption cross sections. Received: 7 October 1997  相似文献   

9.
The dynamic and static properties of a supercooled (non-entangled) polymer melt are investigated via molecular-dynamics (MD) simulations. The system is confined between two completely smooth and purely repulsive walls. The wall-to-wall separation (film thickness), D, is varied from about 3 to about 14 times the bulk radius of gyration. Despite the geometric confinement, the supercooled films exhibit many qualitative features which were also observed in the bulk and could be analyzed in terms of mode-coupling theory (MCT). Examples are the two-step relaxation of the incoherent intermediate scattering function, the time-temperature superposition property of the late time α-process and the space-time factorization of the scattering function on the intermediate time scale of the MCT β-process. An analysis of the temperature dependence of the α-relaxation time suggests that the critical temperature, T c, of MCT decreases with D. If the confinement is not too strong ( D≥10monomer diameter), the static structure factor of the film coincides with that of the bulk when compared for the same distance, T - T c(D), to the critical temperature. This suggests that T - T c(D) is an important temperature scale of our model both in the bulk and in the films. Received 12 September 2001  相似文献   

10.
The magnetic transport properties have been measured for La0.67-xYxCa0.33MnO3 ( 0 ⩽ x ⩽ 0.14) system. It was found that the transition temperature T p almost linearly moves to higher temperature as H increases. Electron spin resonance confirms that above T p , there exist ferromagnetic clusters. From the magnetic polaron point of view, the shift of T p vs. H was understood, and it was estimated that the size of the magnetic polaron is of 9.7 ∼ 15.4 ? which is consistent with the magnetic correlation length revealed by the small-angle neutron-scattering technique. The transport properties at temperatures higher than T p conform to the variable-range hopping mechanism. Received 27 August 2002 / Received in final form 2 December 2002 Published online 14 March 2003  相似文献   

11.
12.
Electrical conductivity and dielectric properties of single-crystal TlGaSe2 have been studied as a function of γ irradiation dose in the 100–280 K range including the existence of an incommensurate phase. Anomalies in the form of maxima have been observed in the σ=f(T), tan δ=f(T), and ɛ=f(T) curves at the points of transition from the paraphase to incommensurate (IC) phase, T i, and from the IC to commensurate phase, T c. The increase in the quantities σ, tan δ, and ɛ observed initially with increasing irradiation dose is followed by their strong decrease and disappearance of the anomalies. It has been established that γ irradiation does not affect the phase transition temperatures T i and T c. Fiz. Tverd. Tela (St. Petersburg) 40, 1328–1331 (July 1998)  相似文献   

13.
We extend a recent chiral approach to nuclear matter of Lutz et al.Phys. Lett. B 474, 7 (2000)) by calculating the underlying (complex-valued) single-particle potential U(p, k f) + iW(p, k f). The potential for a nucleon at the bottom of the Fermi sea, U(0, k f0) = - 20.0 MeV, comes out as much too weakly attractive in this approach. Even more seriously, the total single-particle energy does not rise monotonically with the nucleon momentum p, implying a negative effective nucleon mass at the Fermi surface. Also, the imaginary single-particle potential, W(0, k f0) = 51.1 MeV, is too large. More realistic single-particle properties together with a good nuclear-matter equation of state can be obtained if the short-range contributions of non-pionic origin are treated in mean-field approximation (i.e. if they are not further iterated with 1π-exchange). We also consider the equation of state of pure neutron matter ˉEn(k n) and the asymmetry energy A(k f) in that approach. The downward bending of these quantities above nuclear-matter saturation density seems to be a generic feature of perturbative chiral pion-nucleon dynamics. Received: 19 December 2002 / Accepted: 11 February 2003 / Published online: 15 April 2003  相似文献   

14.
This paper is a sequel of a previous one (Scalar mesons in a chiral quark model with glueball, Eur. Phys. J. A 8, 567 (2000)) where an attempt to construct an effective U(3)×U(3)-symmetric meson Lagrangian with a scalar glueball was made. The glueball was introduced by using the dilaton model on the base of scale invariance. The scale invariance breaking because of current quark masses and the scale anomaly of QCD, reproduced by the dilaton potential, was taken into account. However, in the previous paper, the scale invariance breaking because of the terms like h φφ2 and h σ , where φ and are the pseudoscalar and scalar isosinglets, was not taken into account. These terms are produced by the part of the 't Hooft interaction that is connected with gluon anomalies. Allowing for the scale invariance breaking by these terms has a decisive effect on the quarkonium-glueball mixing and noticeably changes the widths of glueball strong decays. Taking account of this additional source of the scale invariance breaking and its implications are the subject of the present work. It is also shown that in the decay of a glueball into four pions, the channel with two ρ-resonances dominates. Received: 11 January 2001 / Accepted: 25 January 2001  相似文献   

15.
The molecular dynamics in thin films (18 nm-137 nm) of isotactic poly(methyl methacrylate) (i-PMMA) of two molecular weights embedded between aluminium electrodes are measured by means of dielectric spectroscopy in the frequency range from 50 mHz to 10 MHz at temperatures between 273 K and 392 K. The observed dynamics is characterized by two relaxation processes: the dynamic glass transition (α-relaxation) and a (local) secondary β-relaxation. While the latter does not depend on the dimensions of the sample, the dynamic glass transition becomes faster (≤2 decades) with decreasing film thickness. This results in a shift of the glass transition temperature T g to lower values compared to the bulk. With decreasing film thickness a broadening of the relaxation time distribution and a decrease of the dielectric strength is observed for the α-relaxation. This enables to deduce a model based on immobilized boundary layers and on a region displaying a dynamics faster than in the bulk. Additionally, T g was determined by temperature-dependent ellipsometric measurements of the thickness of films prepared on silica. These measurements yield a gradual increase of T g with decreasing film thickness. The findings concerning the different thickness dependences of T g are explained by changes of the interaction between the polymer and the substrates. A quantitative analysis of the T g shifts incorporates recently developed models to describe the glass transition in thin polymer films. Received 12 August 2001 and Received in final form 16 November 2001  相似文献   

16.
17.
The behavior of the bulk two-point correlation function G(;T| d ) in d-dimensional system with van der Waals type interactions is investigated and its consequences on the finite-size scaling properties of the susceptibility in such finite systems with periodic boundary conditions is discussed within mean-spherical model which is an example of Ornstein and Zernike type theory. The interaction is supposed to decay at large distances r as r - (d + σ), with 2 < d < 4, 2 < σ < 4 and d + σ≤6. It is shown that G(;T| d ) decays as r - (d - 2) for 1 ≪r≪ξ, exponentially for ξ≪rr *, where r * = (σ - 2)ξlnξ, and again in a power law as r - (d + σ) for rr *. The analytical form of the leading-order scaling function of G(;T| d ) in any of these regimes is derived. Received 28 May 2001  相似文献   

18.
Binary disordered systems are usually obtained by mixing two ingredients in variable proportions: conductor and insulator, or conductor and super-conductor. They present very specific properties, in particular the second-order percolation phase transition, with its fractal geometry and the multi-fractal properties of the current moments. These systems are naturally modeled by regular bi-dimensional or tri-dimensional lattices, on which sites or bonds are chosen randomly with given probabilities. The two significant parameters are the ratio h = σ 1 of the complex conductances, σ and σ 1, of the two components, and their relative abundances p (or, respectively, 1 - p). In this article, we calculate the impedance of the composite by two independent methods: the so-called spectral method, which diagonalises Kirchhoff's Laws via a Green function formalism, and the Exact Numerical Renormalization method (ENR). These methods are applied to mixtures of resistors and capacitors (R-C systems), simulating e.g. ionic conductor-insulator systems, and to composites constituted of resistive inductances and capacitors (LR-C systems), representing metal inclusions in a dielectric bulk. The frequency dependent impedances of the latter composites present very intricate structures in the vicinity of the percolation threshold. In this paper, we analyse the LR-C behavior of compounds formed by the inclusion of small conducting clusters (“n-legged animals”) in a dielectric medium. We investigate in particular their absorption spectra who present a pattern of sharp lines at very specific frequencies of the incident electromagnetic field, the goal being to identify the signature of each animal. This enables us to make suggestions of how to build compounds with specific absorption or transmission properties in a given frequency domain. Received 16 August 2002 Published online 14 February 2003 RID="a" ID="a"e-mail: laurent.raymond@l2mp.fr RID="b" ID="b"e-mail: steffen.schaefer@l2mp.fr RID="c" ID="c"UMR CNRS 6137  相似文献   

19.
We derive probabilistic limit theorems that reveal the intricate structure of the phase transitions in a mean-field version of the Blume–Emery–Griffiths model [Phys. Rev. A 4 (1971) 1071–1077]. These probabilistic limit theorems consist of scaling limits for the total spin and moderate deviation principles (MDPs) for the total spin. The model under study is defined by a probability distribution that depends on the parameters n, β, and K, which represent, respectively, the number of spins, the inverse temperature, and the interaction strength. The intricate structure of the phase transitions is revealed by the existence of 18 scaling limits and 18 MDPs for the total spin. These limit results are obtained as (β,K) converges along appropriate sequences (βn, kn) to points belonging to various subsets of the phase diagram, which include a curve of second-order points and a tricritical point. The forms of the limiting densities in the scaling limits and of the rate functions in the MDPs reflect the influence of one or more sets that lie in neighborhoods of the critical points and the tricritical point. Of all the scaling limits, the structure of those near the tricritical point is by far the most complex, exhibiting new types of critical behavior when observed in a limit-theorem phase diagram in the space of the two parameters that parametrize the scaling limits. American Mathematical Society 2000 Subject Classifications. Primary 60F10, 60F05, Secondary 82B20  相似文献   

20.
We present the results of the current analysis of the partial wave IJ PC = 00+ + based on the available data for meson spectra ( ππ, KˉK,ηη,η,ππππ). In the framework of the K-matrix approach, the analytical amplitude has been reconstructed in the mass region 280 MeV < < 1900 MeV. The following scalar-isoscalar states are seen: comparatively narrow resonances f 0(980), f 0(1300), f 0(1500), f 0(1750) and the broad state f0(1200-1600). The positions of the amplitude poles (masses and total widths of the resonances) are determined as well as pole residues (partial widths to meson channels ππ, KˉK,ηη,η,ππππ). The fitted amplitude gives us the positions of the K-matrix poles (bare states) and the values of bare-state couplings to meson channels thus allowing the quark-antiquark nonet classification of bare states. On the basis of the obtained partial widths to the channels ππ, KˉK,ηη,η, we estimate the quark/gluonium content of f 0(980), f 0(1300), f 0(1500), f 0(1750), f0(1200-1600). For f 0(980), f 0(1300), f 0(1500) and f 0(1750), their partial widths testify the qˉq origin of these mesons though being unable to provide precise evaluation of the possible admixture of the gluonium component in these resonances. The ratios of the decay coupling constants for the f0(1200-1600) support the idea about the gluonium nature of this broad state. Received: 14 May 2002 / Accepted: 20 August 2002 / Published online: 11 February 2003 RID="a" ID="a"e-mail: anisovic@thd.pnpi.spb.ru Communicated by A. Sch?fer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号