首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米孔单分子检测技术是一种集操作简单、灵敏度高、检测速度快、无需标记等优点的传感检测技术,广泛应用于蛋白质检测、基因测序和标志物检测等领域。基因测序的费用、灵敏度和精度是该检测技术的发展中亟待解决的主要问题,而开发新型的纳米孔材料则是解决这些问题的关键手段。本文从纳米孔材料的选择和设计角度出发,综述了三种不同的纳米孔,即蛋白质等生物纳米孔、固态纳米孔和新型二维材料纳米孔在生物分子检测方面的应用现状,并比较了生物纳米孔与固态纳米孔的差别。本文也重点阐述了二维材料纳米孔在生物分子检测中的实验和模拟研究进展。最后,对纳米孔检测技术的发展前景进行了展望。  相似文献   

2.
金团簇的荧光性质及其生物应用   总被引:2,自引:0,他引:2  
金纳米团簇作为一类新型纳米材料具有独特的光学特性。当金纳米团簇颗粒的尺寸小到与电子的费米波长(〈1nm)相当时,由于量子尺寸效应,金颗粒会受激发射出荧光。作为一种新型荧光材料,金纳米团簇具有发光颜色随团簇尺寸可调、荧光不易猝灭等许多优势。本文主要综述了金纳米团簇的荧光性质及其在生物标记、生物成像以及生物检测等方面的应用...  相似文献   

3.
荧光纳米生物传感平台由于具有灵敏度高、选择性好、操作简单、成本低、实时监测等特点,吸引了广泛的关注。近年来,随着纳米技术的飞速发展,具有纳米结构的材料(纳米材料)在生物传感领域显示出独特的优势。与传统材料相比,纳米材料显示出独特的物化性质,如光学、电学、机械、催化和磁性等。金属(如Au、Ag、Cu及其合金)纳米簇(MNCs)是纳米科学和纳米技术领域中一种新颖的多功能纳米材料,其通常由几个到几十个金属原子组成,其核的尺寸通常小于2 nm。由于其发光能力强、易于合成和进行表面功能化、生物相容性好、尺寸超小、毒性低等优点,金属纳米簇在能源催化、医学诊断、电子器件、生物传感等领域得到了广泛的应用。此外,金属纳米簇的荧光性能极佳(如大的斯托克斯位移、可调节的荧光、高的光学稳定性和荧光量子产率等),因此被作为荧光纳米探针广泛应用于生物传感领域。该综述介绍了近年来基于不同构建机制的金属纳米簇基的传感平台的研究进展,及其在检测离子、生物分子、pH和温度传感等方面的应用。相信该综述能为从不同传感机理构建更具前景的生物传感器提供一些新见解和理论指导。  相似文献   

4.
随着纳米技术和生物技术的发展,将纳米颗粒材料与天然酶结合起来构建纳米杂化酶,可以解决酶的负载量低、活性和稳定性不好等问题.目前,新型纳米颗粒材料-纳米金被广泛应用于构建杂化酶体系.我们将从纳米金杂化酶的种类、制备方法、优势以及应用等方面对纳米金杂化酶的研究进展进行概述.  相似文献   

5.
贺芳  王树 《化学进展》2009,21(11):2372-2378
近年来,以共轭聚合物作为生物传感元件,在生物大分子(如核酸、蛋白质)特异性识别、检测方面的研究越来越受到人们的关注。共轭聚合物具有强的光捕获能力,具有倍增光学响应性,可用来放大荧光传感信号,大大提高检测的灵敏度,为生物传感器的发展提供了新的传感模式。基于共轭聚合物的新型生物传感器在医疗诊断、环境检测以及国家安全防御等方面具有广泛的应用前景。本文简要介绍了共轭聚合物的荧光信号放大机制以及在蛋白质、酶、抗原-抗体检测方面的应用。最后对共轭聚合物在蛋白质检测方面的未来发展趋势进行了展望。  相似文献   

6.
纳米花型酶-无机杂化固定化酶研究进展   总被引:1,自引:0,他引:1  
冯慧  韩娟  黄文睿  吴嘉聪  李媛媛  王蕾  王赟 《化学通报》2021,84(12):1263-1273
酶是一种绿色高效的生物催化剂,被广泛地应用于工业生产中,为了更好的提升游离酶的性能,酶固定化技术应运而生。然而,与游离酶相比,固定化酶活性下降以及传质受限一直是酶固定化技术亟待解决的关键问题。作为一种新型酶固定化技术,纳米花型酶-无机杂化固定化酶因具有高比表面积、高酶活性和高催化效率,且制备简单,绿色无污染受到广泛关注。本文综述了近年来纳米花型酶-无机杂化固定化酶的研究进展,根据纳米花型酶-无机杂化固定化酶的形成特点,将其分为单酶纳米花、双酶纳米花和负载型纳米花。阐述了纳米花型酶-无机杂化固定化酶的制备过程和形成机理并对纳米花型酶-无机杂化固定化酶在食品工业和检测领域的应用进展做出总结。最后,对纳米花型酶-无机杂化固定化酶的发展前景做出展望。  相似文献   

7.
以牛血清白蛋白(BSA)为模板,制备了金纳米簇-牛血清白蛋白(AuNCs-BSA)荧光探针,构建了一种无酶无标记检测芦丁的荧光传感分析方法。采用透射电镜(TEM)、紫外-可见光谱(UV-Vis)、荧光光谱(FL)表征了AuNCs-BSA的形貌和光学特性。实验结果表明,当存在芦丁时,由于BSA与芦丁的亲和力强于AuNCs,AuNCs从BSA中释放出来,导致体系的荧光猝灭。在优化实验条件下,AuNCs-BSA荧光探针对芦丁检测的线性范围为0~60 μmol/L,检出限(S/N = 3)为0.63 μmol/L。实际样品在低、中、高3个水平下的加标回收率为99.0%~103%,相对标准偏差小于3%。该荧光探针制备简单、无需任何标记、灵敏度高,为实际样品中芦丁含量的测定提供了一种简单、可靠、有效的方法。  相似文献   

8.
金纳米团簇(gold nanoclusters,Au NCs)是一种新型的荧光纳米材料,由几个到几百个原子组成,尺寸接近于电子的费米波长。由于量子尺寸效应,金纳米团簇显示出独特的光学特性。荧光金纳米团簇具有尺寸小、水溶性好、光物理性质好、比表面积大、表面易于修饰以及荧光性质随尺寸可调等优点,是近年来的研究热点。通过改变配体或者生物支架合成的各种荧光金纳米团簇,在传感检测、纳米标记、医学成像和光电子学等领域具有潜在的应用前景。作为新型荧光探针,荧光金纳米团簇已成功用于对阳离子、阴离子及重要的生物活性物质如过氧化氢、葡萄糖、谷胱甘肽、三磷酸腺苷、氨基酸等小分子化合物的检测。本文结合当前的研究现状,介绍了金纳米团簇在小分子化合物荧光检测中的应用,并简要评述了金纳米团簇研究中所面临的挑战及应用前景。  相似文献   

9.
吴伟  贺全国  陈洪 《化学通报》2007,70(4):277-285
磁性纳米粒子是一种新型纳米材料,可应用于各种生物活性物质如蛋白质、DNA等的富集和分离,药物的磁靶向,以及疾病的诊断和治疗等许多领域。由于磁性纳米粒子有着独特的化学和物理性能,已经成功应用到磁控生物传感器、DNA传感器、蛋白质传感器、酶传感器以及其它类型的生物传感器中,并显著提高了生物传感器检测的灵敏度、缩短了生化反应的时间和提高检测的通量,为生物传感器领域开辟了广阔的应用前景。本文概述了磁性纳米粒子在生物传感器中的应用研究进展。  相似文献   

10.
介绍了近年来重金属离子检测的研究现状,综述了电化学生物传感器在重金属离子检测中的应用及其在检测灵敏度、选择性、响应速度、易于操作与实时在线检测方面的优点,阐述了基于生物敏感界面构建的电化学生物传感器在重金属离子检测中的重要作用。分类讨论了国内外一些典型的特异性识别重金属的生物受体,如核酸类,蛋白质类有氨基酸、酶、抗原抗体,细胞微生物等用于构建敏感界面而开发的生物传感器在重金属离子检测领域的进展与成果,以及在构建敏感界面的过程中各种新型纳米材料如金属纳米粒子、碳纳米材料、纳米复合材料等的应用对传感器检测效果的影响。最后结合生物传感器的现状及相关学科的发展,展望了电化学生物传感器在重金属离子检测领域的发展方向。  相似文献   

11.
固定化酶反应器作为蛋白质组学研究中"bottom-up"策略重要的组件,具有酶解快速、酶解效率高、酶稳定性和活性高、简单易操作、能够与多种检测方式联用等优点,对于发展高效快速的蛋白质组学分析方法具有重要意义。本文就固定化酶反应器的制备方法及其在蛋白质组学中的应用做简单的概述,着重介绍酶的固定方法、固定化酶的载体、用于固定的酶的种类。近几年固定化酶反应器的研究集中于提高固酶量、保持酶活性、增加酶解效率、减小非特异性吸附等方面。研究结果表明,采用纳米材料、整体材料等新型载体,提高载体亲水性,采用多酶同时酶解等方法能够有效改善固定化酶反应器的性能,提高蛋白质的鉴定效率。  相似文献   

12.
以新型环状DNA为模板, 制备了环状DNA-银纳米簇(Circular DNA-AgNCs)荧光探针, 构建了一种无酶无标记检测微囊藻毒素-LR(MC-LR)的荧光传感分析方法. 设计的环状DNA由MC-LR适体链(Apt)和适体链的互补链(cDNA)杂交形成, 且cDNA可作为DNA模板用于合成AgNCs. 利用透射电子显微镜(TEM)、 紫外-可见光谱(UV-Vis)和荧光光谱(FL)表征了AgNCs的形貌和光学特性.结果表明, 当存在目标物MC-LR时, 由于MC-LR与环状DNA中Apt高特异性和高亲和力结合, 导致环状DNA解体, 释放出的cDNA-AgNCs在610 nm处呈现强荧光. 在优化实验条件下, 环状DNA-AgNCs荧光探针对MC-LR检测的线性范围为0.005~500 μg/L, 检出限为1.7 ng/L(S/N=3). 该荧光探针具有制备简单、 无需任何标记和灵敏度高等特点, 为环境水样中微囊藻毒素-LR的快速和准确测定提供了一种简单、 可靠和有效的方法.  相似文献   

13.
DNA是构建纳米技术和生物传感技术新设备的良好构建体。DNA生物传感器由于具有灵敏度高、选择性好等特点,近年来获得了飞速发展。研究发现,金属纳米粒子(MNPs)、碳基纳米材料等一系列纳米材料在传感器设计中提高了电化学DNA传感器的传感性能。本文侧重介绍了场效应晶体管、石墨烯、碳纳米管等新型纳米传感材料,以及基于这些材料的DNA生物传感器的最新进展,最后展望了DNA生物传感器的应用前景。  相似文献   

14.
时间分辨荧光生物标记作为一种灵敏的非放射性标记技术,在科研及医疗机构已获得广泛应用。传统的时间分辨荧光标记以稀土螯合物作为分子探针,存在着光化学稳定性差、长期生物毒性以及价格昂贵等缺点。稀土掺杂无机纳米晶因其优异的光化学与光物理性能,是目前普遍看好且有望成为替代稀土螯合物的新一代时间分辨纳米荧光探针。利用稀土纳米探针的长寿命发光,结合时间分辨探测技术,可以有效抑制短寿命的背景荧光干扰,显著提高生物检测的灵敏度和信噪比。本文系统地介绍了稀土掺杂无机纳米晶独特的发光性能及其作为时间分辨纳米荧光探针在疾病标志物体外检测方面的最新研究进展,并对该领域的未来发展方向和趋势进行了深入探讨。  相似文献   

15.
准确、定量检测Fe~(3+)对环境保护和人类健康具有重要意义。目前,荧光传感材料广泛应用于分子传感、气体传感、环境监测等诸多领域。为了实现环境监测领域Fe~(3+)的快速响应、高灵敏和高选择性检测,研究者大力开发了各种新型荧光传感材料,本文重点介绍了金属有机骨架(MOFs)、荧光量子点(QDs)、金属纳米簇、荧光小分子和荧光聚合物等各种新型荧光材料在Fe~(3+)检测中的应用;分析了目前荧光传感材料研究中存在的问题和局限性并对其发展方向进行了展望。  相似文献   

16.
基于氧化铁纳米材料特性的生物分离和生物检测   总被引:1,自引:0,他引:1  
氧化铁纳米粒子是一种新型的磁功能材料,被广泛应用于生物、材料以及环境等众多领域.本文介绍了超顺磁氧化铁纳米粒子的制备方法,比较了各种方法的优缺点;评述了磁性氧化铁纳米粒子在细胞、蛋白质和核酸分离及生物检测中的应用,对多功能复合磁性氧化铁纳米粒子的构建, 在生物医学领域中的应用具有的指导意义.  相似文献   

17.
无酶电化学生物传感器具有环境适用性强、稳定性高、材料简单易得、灵敏度高、检测限低等特点,近年来受到研究者广泛关注。纳米材料有类酶活性,表现出类似天然酶的酶促反应动力学和催化机理,且能够增强界面吸附性能,增加电催化活性,并促进电子转移动力学,从而广泛应用于无酶电化学生物传感器。本文探索了具有电催化活性的纳米材料及其修饰电极的制备方法,介绍了无酶电化学传感器在医疗诊断、食品检测、环境检测以及其他领域中的应用,讨论了开发基于纳米材料的电化学传感器的未来机遇和挑战。  相似文献   

18.
荧光内滤效应(inner filter effect,IFE)是指吸收体对荧光体激发光或发射光(或对两者同时)的吸收,造成荧光体的荧光强度降低的现象。IFE相较于荧光共振能量转移等技术省却了许多繁琐的标记过程,具有灵敏度高、选择性好和操作简单灵活等优点,在环境检测领域具有广泛的应用前景。吸收体和荧光体是组成IFE传感体系的两个主要单元,两者的光学特性和谱带重叠程度直接影响着IFE的猝灭效率,但可选择的材料相对有限。发掘新型纳米材料,探索合适的吸收体-荧光体组合有助于提高IFE的猝灭效率,增强检测效果。本文综述了近年来IFE在环境检测中的研究进展,包括重金属离子、阴离子和小分子环境污染物等物质的检测,并分析了纳米材料在IFE传感体系中的重要作用,最后探讨了基于IFE的荧光分析方法所面临的挑战及未来的发展方向。  相似文献   

19.
介绍了贵金属纳米团簇(noble metallic nanoclusters, NMNCs)的研究现状及其作为一种新型荧光标记纳米材料在生物检测中的重要作用。重点总结了贵金属纳米团簇的优异性质、三种常用的制备方法(模板法、单分子层保护法和蚀刻法)及其近年来在生物传感器、生物探针、细胞标记及成像等领域的应用进展。简要评述和展望了贵金属纳米团簇的发展方向和应用前景。  相似文献   

20.
深色物体表面血手印的CdSe量子点标记荧光显像   总被引:2,自引:1,他引:1  
合成了巯基乙酸修饰的CdSe量子点溶液,用荧光光谱法对该材料进行荧光测试,结果表明,该纳米材料在365 nm激发波长下具有优异的荧光性能。 用CdSe量子点水溶液对多种深色物体表面上的血手印进行标记并通过CCD相机获取荧光图像。 考察标记时间、血液浓度、遗留时间与血手印显像清晰度的关系。 结果表明,标记时间为30 min就可以得到理想的荧光图像。 该材料应用范围较为广泛,对常见深色物体上的血手印有较好的标记荧光成像效果,灵敏度可以达到1%血浓度。 CdSe量子点标记血手印操作简单,适用范围广,荧光亮度高,与背景形成的反差大,获得的荧光图像手印纹线清晰、流畅。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号