首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The present work deals with the analysis of the quasi-particle spectrum and the density of states of monolayer and bilayer (AB- and AA-stacked) graphene. The tight binding Hamiltonian containing nearest-neighbor and next-nearest neighbor hopping and onsite Coulomb interaction within two triangular sub-lattice approach for monolayer graphene, along-with the interlayer coupling parameter for bilayer graphene has been employed. The expressions of quasi-particle energies and the density of states (DOS) are obtained within mean-field Green’s function equations of motion approach. It is found that next-nearest-neighbour intralayer hopping introduce asymmetry in the electronic states above and below the zero point energy in monolayer and bilayer (AA- and AB-stacked) graphene. The behavior of electronic states in monolayer and bilayer graphene is different and highly influenced by interlayer coupling and Coulomb interaction. It has been pointed out that the interlayer coupling splits the quasi-particle peak in density of states while the Coulomb interaction suppresses the bilayer splitting and generates a gap at Fermi level in both AA- and AB-stacked bilayer graphene. The theoretically obtained quasi-particle energies and density of states in monolayer and bilayer (AA- and AB-stacked) graphene has been viewed in terms of recent ARPES and STM data on these systems.  相似文献   

2.
We address the electronic phase engineering in the impurity-infected functionalized bilayer graphene with hydrogen atoms (H-BLG) subjected to a uniform Zeeman magnetic field, employing the tight-binding model, the Green's function technique, and the Born approximation. In particular, the key point of the present work is focused on the electronic density of states (DOS) in the vicinity of the Fermi energy. By exploiting the perturbative picture, we figure out that how the interaction and/or competition between host electrons, guest electrons, and the magnetic field potential can lead to the phase transition in H-BLG. Furthermore, different configurations of hydrogenation, namely reduced table-like and reduced chair-like, are also considered when impurities are the same and/or different. A comprehensive information on the various configurations provides the semimetallic and gapless semiconducting behaviors for unfunctionalized bilayer graphene and H-BLGs, respectively. Further numerical calculations propose a semimetal-to-metal and gapless semiconductor-to-semimetal phase transition, respectively, when only turning on the magnetic field. Interestingly, the results indicate that the impurity doping alone affects the systems as well, leading to semimetal-to-metal and no phase transition in the pristine system and hydrogenated ones, respectively. However, the combined effect of charged impurity and magnetic field shows that the pristine bilayer graphene is not influenced much as the functionalized ones and phase back transitions appear. Tuning of the electronic phase of H-BLG by using both types of electronic and magnetic perturbations play a decisive role in optical responses.  相似文献   

3.
吴江滨  张昕  谭平恒  冯志红  李佳 《物理学报》2013,62(15):157302-157302
本文将第一性原理和紧束缚方法结合起来, 研究了层间不同旋转角度对双层石墨烯的电子能带结构和态密度的影响. 分析发现, 旋转双层石墨烯具有线性的电子能量色散关系, 但其费米速度随着旋转角度的减小而降低. 进一步研究其电子能带结构发现, 不同旋转角度的双层石墨烯在M点可能会出现大小不同的的带隙, 而这些能隙会增强双层石墨烯的拉曼模强度, 并由拉曼光谱实验所证实. 通过对比双层石墨烯的晶体结构和电子态密度, 发现M点处带隙来自于晶体结构中的“类AB堆垛区”. 关键词: 旋转双层石墨烯 第一性原理 紧束缚 电子结构  相似文献   

4.
帅永 《中国物理 B》2017,26(5):56301-056301
Structural, electronic, and magnetic behaviors of 5d transition metal(TM) atom substituted divacancy(DV) graphene are investigated using first-principles calculations. Different 5d TM atoms(Hf, Ta, W, Re, Os, Ir, and Pt) are embedded in graphene, these impurity atoms replace 2 carbon atoms in the graphene sheet. It is revealed that the charge transfer occurs from 5d TM atoms to the graphene layer. Hf, Ta, and W substituted graphene structures exhibit a finite band gap at high symmetric K-point in their spin up and spin down channels with 0.783 μB, 1.65 μB, and 1.78 μB magnetic moments,respectively. Ir and Pt substituted graphene structures display indirect band gap semiconductor behavior. Interestingly, Os substituted graphene shows direct band gap semiconductor behavior having a band gap of approximately 0.4 e V in their spin up channel with 1.5 μB magnetic moment. Through density of states(DOS) analysis, we can predict that d orbitals of 5d TM atoms could be responsible for introducing ferromagnetism in the graphene layer. We believe that our obtained results provide a new route for potential applications of dilute magnetic semiconductors and half-metals in spintronic devices by employing 5d transition metal atom-doped graphene complexes.  相似文献   

5.
利用平面波超软赝势方法研究了B/N原子单掺杂和共掺杂对双层石墨烯电子特性的影响.对掺杂双层石墨烯进行结构优化,并计算了能带结构、态密度、分波态密度等.分析表明,层间范德瓦尔斯相互作用对双层石墨烯的电子特性有比较明显的影响;B/N原子单掺杂分别对应p型和n型掺杂,会使掺杂片层的能带平移,使得体系能带结构产生较大分裂;双层掺杂的石墨烯能带结构与掺杂原子的相对位置和距离有关,对电子特性有明显的调控作用.其中特别有意义的是,B/N双层共掺杂在不同位置情况下会得到金属性或禁带宽度约为0.3 eV的半导体能带.  相似文献   

6.
The conductivity and thermopower of a graphene monolayer formed on a tunable graphene bilayer have been studied within a simple model. It has been shown that kinks of the conductivity and peaks of the thermopower of the graphene monolayer appear near the edges of the band gap of the tunable graphene bilayer.  相似文献   

7.
基于密度泛函理论的第一性原理计算方法,我们研究了氢化、氟化及氢氟化五边形石墨烯双层对其电子性能的调控.计算结果表明,氢化和氟化的五边形石墨烯双层可分别在价带顶及导带底形成局域的电子态而显著降低带隙.基于这一特性,我们进一步研究氢氟化的五边形石墨烯双层结构对电子能带的影响,并且发现通过调控氢氟化覆盖度能够有效调节带隙,进而实现五边形石墨烯双层从半导体到金属态的转变.  相似文献   

8.
郭丽娟  胡吉松  马新国  项炬 《物理学报》2019,68(9):97101-097101
采用第一性原理方法研究了二硫化钨/石墨烯异质结的界面结合作用以及电子性质,结果表明在二硫化钨/石墨烯异质结中,其界面相互作用是微弱的范德瓦耳斯力.能带计算结果显示异质结中二硫化钨和石墨烯各自的电子性质得到了保留,同时,由于石墨烯的结合作用,二硫化钨呈现出n型半导体.通过改变界面的层间距可以调控二硫化钼/石墨烯异质结的肖特基势垒类型,层间距增大,肖特基将从p型转变为n型接触.三维电荷密度差分图表明,负电荷聚集在二硫化钨附近,正电荷聚集在石墨烯附近,从而在界面处形成内建电场.肖特基势垒变化与界面电荷流动密切相关,平面平均电荷密度差分图显示,随着层间距逐渐增大,界面电荷转移越来越弱,且空间电荷聚集区位置向石墨烯层方向靠近,导致费米能级向上平移,证实了肖特基势垒随着层间距的增加由p型接触向n型转变.本文的研究结果将为二维范德瓦耳斯场效应管的设计与制作提供指导.  相似文献   

9.
高潭华  吴顺情  张鹏  朱梓忠 《物理学报》2014,63(1):16801-016801
采用第一性原理方法研究了表面氢化的双层氮化硼的结构和电子性质.考虑了表面氢化的双层BN可能存在的六种主要构型,计算结果表明:AB-BN和AA-BN两种构型最为稳定.进一步分析了氢化后的双层BN最稳定构型的能带和电子性质.AB-BN和AA-BN两种构型的原子薄片均为直接带隙半导体,GGA计算的带隙值分别为1.47 eV和1.32 eV.因为GGA通常严重低估带隙值,采用hybrid泛函计算得到带隙值分别为2.52eV和2.34 eV.在最稳定的AB-BN和AA-BN两种构型中,B-N键呈现共价键,而B-H和N-H则具有明显的离子键的特点.在双轴应变下氢化双层BN原子薄片可以被连续地调节带隙,当晶格常数被压缩约8%时,原子薄片由半导体性转变为金属性.  相似文献   

10.
The structural, electronic and dielectric properties of mono and bilayer buckled silicene sheets are investigated using density functional theory. A comparison of stabilities, electronic structure and effect of external electric field are investigated for AA and AB-stacked bilayer silicene. It has been found that there are no excitations of electrons i.e. plasmons at low energies for out-of-plane polarization. While for AB-stacked bilayer silicene 1.48 eV plasmons for in-plane polarization is found, a lower value compared to 2.16 eV plasmons for monolayer silicene. Inter-band transitions and plasmons in both bilayer and monolayer silicene are found relatively at lower energies than graphene. The calculations suggest that the band gap can be opened up and varied over a wide range by applying external electric field for bilayer silicene. In infra-red region imaginary part of dielectric function for AB-stacked buckled bilayer silicene shows a broad structure peak in the range of 75–270 meV compared to a short structure peak at 70 meV for monolayer silicene and no structure peaks for AA-stacked bilayer silicene. On application of external electric field the peaks are found to be blue-shifted in infra-red region. With the help of imaginary part of dielectric function and electron energy loss function effort has been made to understand possible interband transitions in both buckled bilayer silicene and monolayer silicene.  相似文献   

11.
The electronic and transport properties of monolayer and AB-stacked bilayer zigzag graphene nanoribbons subject to the influences of a magnetic field are investigated theoretically. We demonstrate that the magnetic confinement and the size effect affect the electronic properties competitively. In the limit of a strong magnetic field, the magnetic length is much smaller than the ribbon width, and the bulk electrons are confined solely by the magnetic potential. Their properties are independent of the width, and the Landau levels appear. On the other hand, the size effect dominates in the case of narrow ribbons. In addition, the dispersion relations rely sensitively on the interlayer interactions. Such interactions will modify the subband curvature, create additional band-edge states, change the subband spacing or the energy gap, and separate the partial flat bands. The band structures are symmetric or asymmetric about the Fermi energy for monolayer or bilayer nanoribbons, respectively. The chemical-potential-dependent electrical and thermal conductance exhibits a stepwise increase behaviour. The competition between the magnetic confinement and the size effect will also be reflected in the transport properties. The features of the conductance are found to be strongly dependent on the field strength, number of layers, interlayer interactions, and temperature.  相似文献   

12.
13.
The electronic structures of Au monolayers on the Ru(0001) and graphene-coated Ru(0001) surfaces have been calculated by DFT method using the supercell (repeated-slab) approach. The local densities of states (LDOS) and band structures of the monolayer and bilayer Au films adsorbed on the graphene/Ru(0001) and those of free hexagonal Au layers are found to be very similar. This result indicates that the monolayer graphene almost completely screens the Au layers from the Ru(0001) substrate surface, so that electronic properties of Au films adsorbed on graphene are determined predominantly by the electronic structure of the Au adlayers, essentially independent on the electronic structure of the substrate surface.  相似文献   

14.
李登峰  李柏林  肖海燕  董会宁 《中国物理 B》2011,20(6):67101-067101
The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial distributions of the bottom of conduction band and the top of the valence band were presented. The results show that the twinned nanowires exhibit a semiconducting character and the band gap decreases with increasing nanowire diameter due to quantum confinement effects. The valence band maximum and conduction band minimum originate mainly from the S-p and Zn-s orbitals at the core of the nanowires, respectively, which was confirmed by their spatial charge density distribution. We also found that no heterostructure is formed in the twinned ZnS NWs since the valence band maximum and conduction band minimum states are distributed along the NW axis uniformly. We suggest that the hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on the electronic properties of thin ZnS NWs.  相似文献   

15.
To investigate the modification of graphene for a good semiconductor performance, the model of graphene nanoribbon (GNR) and the model of hybrid GNR-ZnO are presented, respectively. The electronic structures such as band structure, density of electronic states (DOS) are investigated by using first-principles calculations based on density functional theory. The results show that the ZnO has direct contribution to the formation of valence band with the composites, which changes the properties of graphene; the adsorption of ZnO nanostructure has an impressive impact on the graphene nanoribbon, which causes the band gap of the composite to become narrower than that of intrinsic graphene nanoribbon. In terms of the graphene nanoribbon, its differentiation of 2p state weakens gradually from the marginal zone to the central region. The mechanism of electronic structure of the graphene nanoribbon and hybrid GNR-ZnO is also discussed to give a further explanation for the change. The results provide a potential way to improve the properties of intrinsic graphene and enhance the controllability of graphene-based materials structure.  相似文献   

16.
It investigated the effects of orderly substituted atoms on density of states, electronic heat capacity and electrical conductivity of graphene plane within tight-binding Hamiltonian model and Green's function method. The results reveal a band gap in the density of states, leading to an acceptor or donor semiconductor. In the presence of foreign atoms, the heat capacity decreases (increases) before (after) the Schottky anomaly. Moreover, the electrical conductivity of the gapped graphene reduces on all ranges of temperature compared to the pristine case. Deductively, all changes in the electronic properties depend on the difference between the on-site energies of the carbon and replaced atoms.  相似文献   

17.
The electronic structures of undoped and N-doped InTaO4 with optimized structures are calculated within the framework of the density functional theory. Calculated lattice constants are in excellent agreement with experimental values, within a difference of 2%. The valence band maximum (VBM) is located near the middle point on the ZD line and the conduction band minimum (CBM) near the middle point on the DX line. This means that InTaO4 is an indirect-gap material and a minimum theoretical gap between VBM and CBM is ca. 3.7 eV. The valence band in the range from −6.0 to 0 eV mainly consists of O 2p orbitals, where In 4d5s5p and Ta 5d orbitals are slightly hybridized with O 2p orbitals. On the other hand, the conduction band below 5.5 eV is mainly composed of the Ta 5d orbitals and the contributions of In and O orbitals are small. The band gap of N-doped InTaO4 decreases by 0.3 eV than that of undoped InTaO4, because new gap states originating from N 2p orbitals appear near the top of the valence band. This result indicates that doping of N atoms into metal oxides is a useful method to develop photocatalysts sensitive to visible light.  相似文献   

18.
本文利用基于GW方法和Bethe-Salpeter方程的第一性原理计算,研究了两种二维共价有机骨架材料(COF)的激发态性质. 单层COF是直接带隙材料,而体相COF呈现间接带隙. 根据直接激子计算的体相COF的光学带隙和吸收光谱与实验一致,而由位于导带底的光生电子和位于价带顶的空穴形成的间接激子能量的理论计算值远低于实验荧光光谱的测量值. 研究表明,可以排除间接带隙COF材料的发光由声子主导的可能性. 研究认为体相COF的发光可能源于缺陷处直接激子的复合. 体相COF的AA堆叠结构导致其带隙是间接的. 如果将堆叠方式由AA变成AB,体相COF将转变成直接带隙材料,它的发光效率可能会增强.  相似文献   

19.
Atomically resolved imaging and spectroscopic characteristics of graphene grown by chemical vapor deposition (CVD) on copper are investigated by means of scanning tunneling microscopy and spectroscopy (STM/STS). For CVD-grown graphene remaining on the copper substrate, the monolayer carbon structures exhibit ripples and appear strongly strained, with different regions exhibiting different lattice structures and electronic density of states (DOS). In particular, ridges appear along the boundaries of different lattice structures, which exhibit excess charging effects. Additionally, the large and non-uniform strain induces pseudo-magnetic field up to ~ 50 T, as manifested by the DOS peaks at quantized energies that correspond to pseudo-magnetic field-induced integer and fractional Landau levels. In contrast, for graphene transferred from copper to SiO2 substrates after the CVD growth, the average strain on the whole diminishes, so do the corresponding charging effects and pseudo-magnetic fields except for sample areas near topological defects. These findings suggest feasible nano-scale “strain engineering” of the electronic states of graphene by proper design of the substrates and growth conditions.  相似文献   

20.
Graphene, a monolayer carbon atoms arranged in hexagonal honeycomb lattice possesses impressive electronic properties. It is utilized as channel, source and drain contact in graphene nanoribbon field-effect transistor (GNRFET). Zigzag graphene nanoribbon (ZGNR) is used as semi-metallic drain and source terminal to a pristine armchair graphene nanoribbon (AGNR) that acts as a semiconducting channel. In addition, a single dopant, either nitrogen or boron is added to create lightly-doped drain and source contact. The electronic properties of graphene nanoribbon (GNR) with lightly-doped drain and source contacts are obtained from tight-binding approach. With self-energy matrices, the lightly-doped contacts Hamiltonian matrices are combined with the pristine channel Hamiltonian matrix. The density of states (DOS) are simulated based on the non-equilibrium Green's Function (NEGF) formalism. Our findings are then compared with published research work. Furthermore, it is demonstrated that the DOS of the overall GNR structure still retain a small band gap and possess semiconducting properties when the channel is connected to semi-metallic contact at the drain and source terminal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号