首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 715 毫秒
1.
High-quality type IIa large diamond crystals are synthesized with Ti/Cu as nitrogen getter doped in an FeNi–C system at temperature ranging from 1230℃ to 1380℃ and at pressure 5.3–5.9 GPa by temperature gradient method. Different ratios of Ti/Cu are added to the Fe Ni–C system to investigate the best ratio for high-quality type IIa diamond. Then, the different content of nitrogen getter Ti/Cu(Ti : Cu = 4 : 3) is added to this synthesis system to explore the effect on diamond growth. The macro and micro morphologies of synthesized diamonds with Ti/Cu added, whose nitrogen concentration is determined by Fourier transform infrared(FTIR), are analyzed by optical microscopy(OM) and scanning electron microscopy(SEM), respectively. It is found that the inclusions in the obtained crystals are minimal when the Ti/Cu ratio is 4:3. Furthermore, the temperature interval for diamond growth becomes narrower when using Ti as the nitrogen getter.Moreover, the lower edge of the synthesis temperature of type IIa diamond is 25℃ higher than that of type Ib diamond.With the increase of the content of Ti/Cu(Ti : Cu = 4 : 3), the color of the synthesized crystals changes from yellow and light yellow to colorless. When the Ti/Cu content is 1.7 wt%, the nitrogen concentration of the crystal is less than 1 ppm.The SEM results show that the synthesized crystals are mainly composed by(111) and(100) surfaces, including(311)surface, when the nitrogen getter is added into the synthesis system. At the same time, there are triangular pits and dendritic growth stripes on the crystal surface. This work will contribute to the further research and development of high-quality type IIa diamond.  相似文献   

2.
High-quality type-Ⅱa gem diamond crystals are successfully synthesized in a NiToMn25Co5-C system by temperature gradient method (TGM) at about 5.5 GPa and 1560 K. Al and Ti/Cu are used as nitrogen getters respectively. While nitrogen getter Al or Ti/Cu is added into the synthesis system, some inclusions and caves tend to be introduced into the crystals. When Al is added into the solvent alloy, we would hardly gain high-quality type-Ⅱa diamond crystals with nitrogen concentration Nc 〈 1 ppm because of the reversible reaction of Al and N at high pressure and high temperature (HPHT). Piowever, when Ti/Cu is added into the solvent alloy, high-quality type-Ⅱa diamond crystals with Nc 〈 1 ppm can be grown by decreasing the growth rate of diamonds.  相似文献   

3.
This paper reprots that with Ni-based catalyst/solvent and with a dopant of NaN 3,large green single crystal diamonds with perfect shape are successfully synthesized by temperature gradient method under high pressure and high temperature in a China-type cubic anvil high-pressure apparatus (SPD-6×1200),and the highest nitrogen concentration reaches approximately 1214-1257 ppm calculated by infrared absorption spectra.The synthesis conditions are about 5.5 GPa and 1240-1300 C.The growth behaviour of diamond with high-nitrogen concentration is investigated in detail.The results show that,with increasing the content of NaN 3 added in synthesis system,the width of synthesis temperature region for growth high-quality diamonds becomes narrower,and the morphology of diamond crystal is changed from cube-octahedral to octahedral at same temperature and pressure,the crystal growth rate is slowed down,nevertheless,the nitrogen concentration doped in synthetic diamond increases.  相似文献   

4.
《中国物理快报》2002,19(11):1707-1710
Diamond crystals,with dimensions of about 0.5-0.6mm,were synthesized in the presence of Fe-Ni and Fe-Ni-Si catalyst solvents under high-pressure-high-temperature(HPHT) conditions.The as-known dendritic pattern was clearly seen on the (111)or (100)planes of diamond single crystals grown using Fe-Ni as a catalyst solvent.However,the conventional dendritic pattern was not observed in diamonds grown in the presence of Fe-Ni-Si alloy catalyst.Trigonal-type,pyramid-type,polygonal-type and rectangular-type growth hillocks were clearly observed on the (111)and (100) surfaces of diamonds grown from the Fe-Ni-Si-C system,and the density of the hillocks is very high at some positions.Clear successive growth layers can also be found on the (111) planes of the high-pressure diamond single crystals grown in the presence of Fe-Ni-Si alloy catalyst.The growth hillocks distributed on the (111) and (100) planes of the diamonds generally occur on or near growth steps,and some of the hillocks terminate at certain solid inclusions and voids.Growth hillocks on the (111) and (100) surfaces directly indicate the spiral growth mechanismj under HPHT.A possible formation process for growth hillocks is proposed.  相似文献   

5.
《中国物理快报》2002,19(3):419-421
Diamond growth instability at high temperature and high pressure (HPHT) has been elucidated by observing the cellular interface in diamond crystals.The HPHT diamond crystals grow layer by layer from solution of carbon in the molten catalyst.In the growth of any other cyrstals from solution,the growth interface is not stable and should be of the greatest significance to understand further the diamond growth mechanism.During the diamond growth,the carbon atoms are delivered to the growing diamond crystal by diffusion through a diamond crystal-solution boundary layer.In front of the boundary layer,there is a narrow constitutional supercooling zone related to the solubility difference between diamond and graphite in the molten catalyst.The diamond growth stability is broken,and the flat or planar growth interface transforms into a cellular interface due to the light supercooling.The phenomenon of solute trails in the diamonds was observed,the formation of solute trails was closely associated with the cellular interface.  相似文献   

6.
High quality Ib gem diamond single crystals were synthesized in cubic anvil high-pressure apparatus (SPD- 6 × 1200) under 5.4GPa and 1230℃-1280℃. The (100) face of seed crystal was used as growth face, and Ni70Mn25Co5 alloy was used as solvent/catalyst. The dependence of crystal quality andβ value (the ratio of height to diameter of diamond crystal) on synthesis temperature was studied. When the synthesis temperature is between 1230℃ and 1280℃, theβ value of the synthetic high-quality gem diamond crystals is between 0.4 and 0.6. The results show that when theβ value is between 0.4 and O. 45, the synthetic diamonds are sheet-shape crystals; however, when theβ value is between 0.45 and 0.6, the synthetic diamonds are tower-shape crystals. In addition, when theβ value is less than 0.4, skeleton crystals will appear. When theβ value is more than 0.6, most of the synthetic diamond crystals are inferior crystals.  相似文献   

7.
Nitrogen is successfully doped in diamond by adding sodium azide (NaN3 ) as the source of nitrogen to the graphite and iron powders. The diamond crystals with high nitrogen concentration, 1000-2200ppm, which contain the same concentrations of nitrogen with natural diamond, have been synthesized by using the system of iron-carbon- additive NAN3. The nitrogen concentrations in diamond increase with the increasing content of NAN3. When the content of NaN3 is increased to 0.7-1.3 wt. %, the nitrogen concentration in the diamond almost remains in a nitrogen concentration range from 1250ppm to 2200ppm, which is the highest value and several times higher than that in the diamond synthesized by a conventional method without additive NaN3 under high pressure and high temperature (HPHT) conditions.  相似文献   

8.
Using the temperature gradient method under high pressure and high temperature, we investigate the dependence of growing high-quality gem diamond crystals on the growth rates. It is found that the lower the growth rate of gem diamond crystals, the larger the temperature range of growing high-quality gem diamond crystals, and the easier the control of temperature. In particular, when growing gem diamonds under a very-low growth rate, the temperature range of growing high-quality gem diamonds can extend from a low-temperature pure {100} growth region to {100} {111} growth regions, and finally to a high-temperature only-{111}-growth region. When growing gem diamonds under a high growth rate, some metal inclusions in the growing diamonds always exist near the seeds, no matter whether the growth temperature is high or low. This result is not in agreement with the result of Sumitomo Electric Corporation in Japan.  相似文献   

9.
The growth rate of diamond has been investigated for a long time and researchers have been attempting to enhance the growth rate of high-quality gem diamond infinitely. However, it has been found according to previous research results that the quality of diamond is debased with the increase of growth rate. Thus, under specific conditions, the growth rate of high-quality diamond cannot exceed a limited value that is called the limited growth rate of diamond. We synthesize a series of type Ib gem diamonds by temperature gradient method under high pressure and high temperature (HPHT) using the as-grown {100} face. The dependence of limited growth rate on growth conditions is studied. The results show that the limited growth rate increases when synthetic temperature decreases, also when growth time is prolonged.  相似文献   

10.
《中国物理快报》2002,19(9):1371-1373
Twin diamond crystals grown at high temperature and high pressure (HPHT) in the presence of FeNi catalyst have been examined by transmission electron microscopy(TEM).Direct observation by TEM shows that there are a large amount of twins which lie on the {111} planes in the HPHT-grown diamonds.The twins in the diamond may be formed and may extend into the inner crystal from the twin nucleus formed in the nucleation process.The twins can be formed due to the carbon atoms falling mistakenly into positions where a twin crystal can form during diamond growth,or condensation of supersaturated vacancies on the {111} plane.some hexagonal dislocation loops related to supersaturated vacancies are found on the twins.The Moire fringe image reveals that stacking faults terminate on the intersecting twin boundary.This suggests that,at the temperature that the HPHT diamond is grown,the bordering partial has propagated by gliding up to the twin interface,which can be described by the reaction of a Shockley partial dislocation with a twin on the {111} plane.  相似文献   

11.
房超  贾晓鹏  陈宁  周振翔  李亚东  李勇  马红安 《物理学报》2015,64(12):128101-128101
在Ni70Mn25Co5-C体系中添加含氢化合物Fe(C5H5)2作为新型氢源, 利用温度梯度法, 在压力为5.5-6.0 GPa、温度为1280-1400 ℃的条件下, 成功合成出氢掺杂的宝石级金刚石大单晶. 通过傅里叶显微红外光谱发现, 随着Fe(C5H5)2添加量的增加, 合成晶体中与氢相关的对应于sp3杂化C-H键的对称伸缩振动和反对称伸缩振动的红外特征峰2850和2920 cm-1逐渐增强, 而晶体中氮含量却逐渐减少. 通过合成晶体的拉曼光谱分析发现, 金刚石的拉曼峰伴随Fe(C5H5)2的添加向高频偏移, 这表明氢的进入在金刚石内部产生了压应力. 观察扫描电子显微镜图像发现, 在低含量Fe(C5H5)2添加时晶体表面平滑, 而高含量添加时晶体表面缺陷增多, 且呈现出气孔状. 使用新的添加剂Fe(C5H5)2作为氢源, 合成出含氢宝石级金刚石单晶, 丰富了金刚石单晶中对氢的研究内容, 也可为理解天然金刚石的形成机理提供帮助.  相似文献   

12.
房超  贾晓鹏  颜丙敏  陈宁  李亚东  陈良超  郭龙锁  马红安 《物理学报》2015,64(22):228101-228101
在压力为5.5–6.2 GPa, 温度为1280–1450 ℃的条件下, 利用温度梯度法详细考察了氮氢协同掺杂对100晶面生长宝石级金刚石的影响. 实验结果表明伴随合成腔体内氮、氢浓度的升高, 合成条件明显升高, 金刚石生长V形区间上移; 晶体的红外光谱中与氮相关的吸收峰急剧增强, 氮含量可达2000 ppm, 同时位于2850 cm-1和2920 cm-1对应于 sp3杂化 C–H 键的对称伸缩振动和反对称伸缩振动的红外特征峰逐渐增强, 表明晶体中既有高的氮含量, 同时又含有氢. 对晶体进行电镜扫描发现, 氮氢协同掺杂对晶体形貌影响明显, 出现拉长的{111}面, 且晶体表面上有三角形生长纹理. 拉曼测试表明, 晶体的峰位向高频偏移、半峰宽变大, 说明氮、氢杂质的进入对晶体内部产生了应力. 本文成功地以{100}晶面为生长面合成出高氮含氢宝石级金刚石单晶, 在探究氮氢共存环境下金刚石生长特性的同时, 也可为理解天然金刚石的形成机理提供帮助.  相似文献   

13.
A series of diamonds with boron and sulfur co-doping were synthesized in the Fe Ni Mn Co-C system by temperature gradient growth(TGG) under high pressure and high temperature(HPHT). Because of differences in additives, the resulting diamond crystals were colorless, blue-black, or yellow. Their morphologies were slab, tower, or minaret-like. Analysis of the x-ray photoelectron spectra(XPS) of these diamonds shows the presence of B, S, and N in samples from which N was not eliminated. But only the B dopant was assuredly incorporated in the samples from which N was eliminated. Resistivity and Hall mobility were 8.510 ?·cm and 760.870 cm~2/V·s, respectively, for a P-type diamond sample from which nitrogen was eliminated. Correspondingly, resistivity and Hall mobility were 4.211×10~5 ?·cm and 76.300 cm~2/V·s for an N-type diamond sample from which nitrogen was not eliminated. Large N-type diamonds of type Ib with B–S doping were acquired.  相似文献   

14.
目前CVD法合成单晶钻石是超硬材料科学和宝石学关注的热点之一,该方法合成的单晶钻石常带有褐色调。通常采用高温高压法(HPHT)提高褐色CVD钻石的色级和透明度,在前期HPHT处理褐色CVD钻石实验基础上,选出颜色改善明显的三颗样品,对其处理前后谱学特征进行对比。采用紫外-可见吸收光谱、红外光谱、光致发光光谱、三维荧光光谱、激光拉曼光谱以及X射线摇摆曲线进行分析。结果表明,褐色和深褐色样品褪色温度较高,处理后样品紫外-可见吸收光谱吸收系数明显减小,透明度明显提高。样品中红外与近红外光谱显示,在1 332 cm-1处的吸收峰与N+中心有关,该中心是褐色CVD钻石常见特征。在3 124 cm-1处吸收峰与NVH0缺陷中心有关,该峰在CVD钻石和HPHT处理钻石中常见。另外在2 700~3 200 cm-1范围变化的一组吸收峰,与C-H键伸缩振动有关。高温对CVD钻石含H基团影响较大,在5~6 GPa压力下处理温度在1 500~1 700 ℃范围,会在近红外波段4 673,6 352,7 354,7 540,7 804和8 535 cm-1出现一组吸收峰,可指示样品经过较高温度处理。目前针对CVD钻石以及经过HPHT处理的CVD钻石近红外波段的论述较少,该研究可以为鉴定CVD钻石及HPHT处理CVD钻石提供依据。综合光致发光光谱和三维荧光光谱分析,处理后样品NV-缺陷比例减小,SiV-中心缺陷比例增加。在5~6 GPa压力下,仅当处理温度高于1 500 ℃时,样品三维荧光光谱在λex/λem=500 nm/575 nm处荧光峰增强,在λex/λem=490 nm/550 nm处荧光峰消失,从某种意义上该峰位变化可指示样品经过较高温度处理。物相分析结果显示,HPHT处理后CVD钻石在1 332 cm-1处拉曼位移半高宽和XRD摇摆曲线半高宽均减小,表现出了较好的一致性,说明经HPHT处理的褐色CVD钻石结晶质量变优。  相似文献   

15.
Xin-Yuan Miao 《中国物理 B》2021,30(6):68102-068102
We synthesized and investigated the boron-doped and boron/nitrogen co-doped large single-crystal diamonds grown under high pressure and high temperature (HPHT) conditions (5.9 GPa and 1290℃). The optical and electrical properties and surface characterization of the synthetic diamonds were observed and studied. Incorporation of nitrogen significantly changed the growth trace on surface of boron-containing diamonds. X-ray photoelectron spectroscopy (XPS) measurements showed good evident that nitrogen atoms successfully incorporate into the boron-rich diamond lattice and bond with carbon atoms. Raman spectra showed differences on the as-grown surfaces and interior between boron-doped and boron/nitrogen co-doped diamonds. Fourier transform infrared spectroscopy (FTIR) measurements indicated that the nitrogen incorporation significantly decreases the boron acceptor concentration in diamonds. Hall measurements at room temperature showed that the carriers concentration of the co-doped diamonds decreases, and the mobility increases obviously. The highest hole mobility of sample BNDD-1 reached 980 cm2·V-1·s-1, possible reasons were discussed in the paper.  相似文献   

16.
Guang-Tong Zhou 《中国物理 B》2022,31(6):68103-068103
The synergistic influences of boron, oxygen, and titanium on growing large single-crystal diamonds are studied using different concentrations of B2O3 in a solvent-carbon system under 5.5 GPa-5.7 GPa and 1300 ℃-1500 ℃. It is found that the boron atoms are difficult to enter into the crystal when boron and oxygen impurities are doped using B2O3 without the addition of Ti atoms. However, high boron content is achieved in the doped diamonds that were synthesized with the addition of Ti. Additionally, boron-oxygen complexes are found on the surface of the crystal, and oxygen-related impurities appear in the crystal interior when Ti atoms are added into the FeNi-C system. The results show that the introduction of Ti atoms into the synthesis cavity can effectively control the number of boron atoms and the number of oxygen atoms in the crystal. This has important scientific significance not only for understanding the synergistic influence of boron, oxygen, and titanium atoms on the growth of diamond in the earth, but also for preparing the high-concentration boron or oxygen containing semiconductor diamond technologies.  相似文献   

17.
In this paper,large single crystal diamond with perfect shape and high nitrogen concentration approximately 1671-1742 ppm was successfully synthesized by temperature gradient method (TGM) under high pressure and high temperature (HPHT).The HPHT synthesis conditions were about 5.5 GPa and 1500-1550 K.Sodium azide (NaN3) with different amount was added as the source of nitrogen into the synthesis system of high pure graphite and kovar alloy.The effects of additive NaN3 on crystal growth habit were investigated in detail.The crystal morphology,nitrogen concentration and existing form in synthetic diamond were characterized by means of scanning electron microscope (SEM) and infrared (IR) absorption spectra,respectively.The results show that with an increase of the content of NaN3 added in the synthesis system,the region of synthesis temperature for high-quality diamond becomes narrow,and crystal growth rate is restricted,whereas the nitrogen concentration in synthetic diamond increases.Nitrogen exists in diamond mainly in dispersed form (C-centers) and partially aggregated form (A-centers).The defects occur more frequently on crystal surface when excessive NaN3 is added in the synthesis system.  相似文献   

18.
山东济南中乌新材料有限公司利用六面顶油压机生产出大颗粒钻石,为了掌握这些合成钻石的品质及与天然钻石的区分方法,采用宽频诱导发光光谱仪(GV5000)、红外光谱仪、钻石特征光谱检测仪(PL5000)、激光诱导击穿光谱仪和X射线能谱仪,对该公司生产的225粒无色、蓝色和黄色高温高压(HPHT)合成钻石进行检测,并与天然钻石对比。HPHT合成钻石样品的晶形以(111)晶面和(100)晶面共存的聚形为主导。原石切磨成圆钻形成品的出成率在20%~67%之间,净度级别为VVS-P,颜色级别为D-H。通过GV5000分析,三种颜色样品均可观察到立方八面体生长结构发光图案,无色HPHT合成钻石为强蓝色荧光和磷光,发光峰位于495 nm,与晶格中的顺磁氮有关;蓝色HPHT合成钻石为蓝-绿蓝色荧光和蓝色磷光,发光峰位于501 nm,与晶格中的顺磁氮、硼有关;黄色HPHT合成钻石为弱绿色荧光和磷光,显示556和883 nm Ni+相关发光峰,这些特征可与天然钻石相区分。红外光谱分析表明,无色HPHT合成钻石在1 332~1 100 cm-1无明显氮相关吸收,在2 802 cm-1有B0相关吸收,为含有少量硼的Ⅱa型;蓝色HPHT合成钻石位于1 294 cm-1有与B-相关的强吸收,归属为Ⅱb型;黄色HPHT合成钻石位于1 130和1 344 cm-1有与孤氮相关的明显吸收,归属为Ⅰb型。PL5000光致发光光谱显示,三种颜色HPHT合成钻石可检测到659,694,707,714和883 nm等镍相关缺陷发光峰。相比之下,无色和黄色天然钻石通常为Ⅰa型,具有1 282和1 175 cm-1等聚合氮的红外光谱吸收,光致发光光谱通常可检测到415 nm(N3)零声子线,由孤氮、硼和镍等缺陷导致的光谱特征极为罕见。因此,红外光谱和光致发光光谱特征可作为重要的鉴别依据。激光诱导击穿光谱仪检测到无色HPHT合成钻石的出露包裹体主要成分为Fe。X射线能谱分析显示,对于含包裹体较多的样品,无色和蓝色HPHT合成钻石可检测到Fe,黄色HPHT合成钻石可检测到Fe和Ni,为其中包裹体的成分,这可作为HPHT合成钻石鉴定性特征。综上所述,通过GV5000超短波紫外荧光和磷光测试,配合红外光谱和光致发光光谱特征,结合包裹体成分特征,可以有效区分该研究的合成钻石和天然钻石。  相似文献   

19.
利用温度梯度法, 在5.3-5.7 GPa压力、1200-1600 ℃的温度条件下, 将B2O3粉添加到FeNiMnCo+C合成体系内, 进行B2O3添加宝石级金刚石单晶的合成. 研究得到了FeNiMnCo触媒生长B2O3添加宝石级金刚石单晶的相图分布规律. 结果表明B2O3添加会使晶体生长的“V”形区上移和低温六面体单晶生长区间变宽. 通过晶体生长实验, 研究合成了不同形貌的B2O3添加宝石级金刚石单晶. 研究同时证实, B2O3的过量添加会对宝石级金刚石单晶生长带来不利影响. 当B2O3的添加量高于约3 wt‰、生长时间超过20 h时, 很难实现优质B2O3添加宝石级金刚石单晶的生长. 但B2O3的适量添加(不超过1 wt‰), 有助于提高低温板状六面体宝石级金刚石单晶的成品率. 通过对晶体生长速度的研究发现, B2O3的添加使得优质晶体的生长速度明显降低, 随着晶体生长时间的延长, B2O3添加剂对晶体生长的抑制作用会越发明显. 扫描电镜测试结果表明, 合成体系内B2O3添加剂的引入, 导致晶体表面的平整度明显下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号