首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The structure and the biosorption properties of fungal biomass of Aspergillus niger originated from citric acid fermentation industry was investigated. This waste biomass, produced in high quantity in carefully controlled industrial processes, has certain favourable characteristics that may be improved for its usefulness. In environmental chemistry, it is known for the removal of heavy metals cations. In this work, different alkaline treatments (1M NaOH/20°C/24 h and 10M NaOH/107°C/6 h) were used to evaluate the dependence of sorption properties of biomass on the cell wall composition. The biosorption was studied by the batch method, with the biomass concentration of 1 g/l, at pH 6. The adsorption of lead was more effective than that of cadmium. The biosorption capacity was evaluated using the biosorption isotherm derived from the equilibrium data. At pH 6, the maximmum lead biosorption capacity estimated with the Langmuir model was 93 mg/g dry biomass.  相似文献   

3.
The present work proposes the use of Agave sisalana (sisal fiber) as an natural adsorbent for ions Pb(II) and Cd(II) biosorption from natural waters. The flame atomic absorption spectrometry was used for quantitative determination and study of the ions Pb(II) and Cd(II) adsorption on the solid phase. The Fourier transform infrared spectroscopy (FT IR) was used to investigate the sisal structure and the specific BET surface area was analyzed. The biosorption potential of sisal as biosorbent for the removal of the ions Pb(II) and Cd(II) from aqueous solution was investigate considering the followings parameters: pH, biomass amount and contact time. Langmuir and Freundlich isotherms were used to evaluate adsorption behavior of the ions on this solid phase. The results showed that sisal has a surface area to adsorption of 0.0233 m2 g− 1, and the OH and CO functional groups are the main involved in the biosorption. The best interpretation for the experimental data was given by Freundlich isotherm that proposes a monolayer sorption with a heterogeneous energetic distribution of active sites, accompanied by interactions between sorbed molecules. The maximum monolayer biosorption capacity was found to be 1.85 mg g− 1 for Cd (II) and 1.34 mg g− 1 for Pb (II) at pH 7 and 296 K. This phase solid can be used for biosorption of cadmium and lead in polluted natural waters.  相似文献   

4.
The adsorptive removal of lead (II) from aqueous medium was carried out by chemically modified silica monolith particles. Porous silica monolith particles were prepared by the sol-gel method and their surface modification was carried out using trimethoxy silyl propyl urea (TSPU) to prepare inorganic–organic hybrid adsorbent. The resultant adsorbent was evaluated for the removal of lead (Pb) from aqueous medium. The effect of pH, adsorbent dose, metal ion concentration and adsorption time was determined. It was found that the optimum conditions for adsorption of lead (Pb) were pH 5, adsorbent dose of 0.4 g/L, Pb(II) ions concentration of 500 mg/L and adsorption time of 1 h. The adsorbent chemically modified SM was characterized by scanning electron microscopy (SEM), BET/BJH and thermo gravimetric analysis (TGA). The percent adsorption of Pb(II) onto chemically modified silica monolith particles was 98%. An isotherm study showed that the adsorption data of Pb(II) onto chemically modified SM was fully fitted with the Freundlich and Langmuir isotherm models. It was found from kinetic study that the adsorption of Pb(II) followed a pseudo second-order model. Moreover, thermodynamic study suggests that the adsorption of Pb(II) is spontaneous and exothermic. The adsorption capacity of chemically modified SM for Pb(II) ions was 792 mg/g which is quite high as compared to the traditional adsorbents. The adsorbent chemically modified SM was regenerated, used again three times for the adsorption of Pb(II) ions and it was found that the adsorption capacity of the regenerated adsorbent was only dropped by 7%. Due to high adsorption capacity chemically modified silica monolith particles could be used as an effective adsorbent for the removal of heavy metals from wastewater.  相似文献   

5.
Biosorption of copper (Cu), zinc (Zn), and lead (Pb) on watermelon rind in a well-stirred batch system was investigated. pH showed significant influence on the biosorption process. Optimal pH for Cu, Zn, and Pb biosorption was found to be 5.0, 6.8 and 6.8, respectively. Watermelon rind was in favor of Pb and it could remove up to 99% Pb between pH ranges of 5 and 6.8 when Pb concentration is lower than 100 mg/L. The biosorptive capacity of watermelon on Cu, Zn, and Pb was 6.281, 6.845, and 98.063 mg/g, respectively. The equilibrium data fitted well to Langmuir adsorption isotherm while pseudo-second-order kinetic model exhibited more advantages for describing kinetic data than pseudo-first-order kinetic model. NaOH was found to be a suitable eluent. After desorption in NaOH solution, the resorption efficiency reached as high as 99% of these three metals either in a single-component or multi-component system. From the characterization study, ion exchange and micro-precipitation were estimated to be the main mechanisms. Due to its high metal uptake capacity, reusability, and metal recovery, watermelon rind can be considered as an eco-friendly and economic biosorbent for removing Pb from water and wastewater.  相似文献   

6.
Industrial wastewaters containing heavy metals pose a major environmental problem that needs to be remedied. The present study reports the ability of two non-living (dried) fresh water algae, Oedogonium sp. and Nostoc sp. to remove lead(II) from aqueous solutions in batch system under varying range of pH (2.99-7.04), contact time (5-300 min), biosorbent dose (0.1-0.8 g/L), and initial metal ion concentrations (100 and 200mg/L). The optimum conditions for lead biosorption are almost same for the two algal biomass Oedogonium sp. and Nostoc sp. (pH 5.0, contact time 90 and 70 min, biosorbent dose 0.5 g/L and initial Pb(II) concentration 200mg/L) however, the biomass of Oedogonium sp. was found to be more suitable than Nostoc sp. for the development of an efficient biosorbent for the removal of lead(II) from aqueous solutions, as it showed higher values of q(e) adsorption capacity (145.0mg/g for Oedogonium sp. and 93.5mg/g for Nostoc sp.). The equilibrium data fitted well in the Langmuir isotherms than the Freundlich isotherm, thus proving monolayer adsorption of lead on both the algal biomass. Analysis of data shows that the process involves second-order kinetics and thermodynamic treatment of equilibrium data shows endothermic nature of the adsorption process. The spectrum of FTIR confirms that the amino and carboxyl groups on the surface of algal biomass were the main adsorption sites for lead removal. Both the biosorbents could be regenerated using 0.1 mol/L HCl solution, with upto 90% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that both the algal biomass could be used as an efficient biosorbents for the treatment of lead(II) bearing wastewater streams.  相似文献   

7.
Biosorption of heavy metals by bacteria isolated from activated sludge   总被引:1,自引:0,他引:1  
Twelve aerobic bacteria from activated sludge were isolated and identified. These included both Gram-positive (e.g., Bacillus) and Gram-negative (e.g., Pseudomonas) bacteria. The biosorption capacity of these strains for three different heavy metals (copper, nickel, and lead) was determined at pH 5.0 and initial metal concentration of 100 mg/L. Among these 12 isolates, Pseudomonas pseudoalcaligenes was selected for further investigation owing to its high metal biosorption capacity. The lead and copper biosorption of this strain followed the Langmuir isotherm model quite well with maximum biosorption capacity (q max) reaching 271.7mg of Pb2+/g of dry cell and 46.8 mg of Cu2+/g of dry cell at pH 5.0. Study of the effect of pH on lead and copper removal indicated that the metal biosorption increased with increasing pH from 2.0 to 7.0. A mutual inhibitory effect was observed in the lead-copper system because the presence of either ion affected the sorption capacity of the other. Unequal inhibitions were observed in all the nickel binary systems. The increasing order of affinity of the three metals toward P. pseudoalcaligenes was Ni<Cu<Pb. The metal biosorptive potential of these isolates, especially P. pseudoalcaligenes, may have possible applications in the removal and recovery of metals from industrial effluents.  相似文献   

8.
纯相钙铝层状双氢氧化物对磷的吸附特性   总被引:2,自引:0,他引:2  
采用乙醇辅助液相共沉淀法制备了纯相Ca-Al-LDH层状双金属氢氧化物,考察了Ca-Al-LDH的投加量、吸附时间、pH值、无机电解质(Na2CO3 ,KCl ,Na2SO4,KNO3)和温度等因素对磷吸附的影响,结果表明,纯相Ca-Al-LDH对磷酸根离子具有很好的吸附性能,最大饱和吸附量可达160.78 mg/g,当pH值为5.1、温度为45 ℃、吸附时间为600 min、LDH投加量为0.6 g/L、磷初始浓度为80 mg/L时,磷的去除率高达95.88%;无机阴离子会抑制磷在吸附剂上的吸附,当Cl-浓度从2.5 g/L升高到25 g/L时,Ca-Al-LDH对磷酸盐的最大饱和吸附量从69.96 mg/g降至53.18 mg/g,降低了23.99%;当SO42-浓度从2.5 g/L升高到25 g/L时,Ca-Al-LDH对磷酸盐的最大饱和吸附量降低了24.79%,其它无机阴离子对磷在吸附剂上的吸附也有一定的影响。 Ca-Al-LDH对水中磷的吸附符合二级动力学方程和Langmuir等温模型。 采用扫描电子显微镜、傅里叶变换红外光谱仪和X射线衍射仪等技术手段对制备的纯相Ca-Al-LDH及其吸附磷酸根后的产物进行表征,揭示了Ca-Al-LDH对磷酸根的吸附可能是静电吸引、化学吸附和阴离子插层等过程协同作用的吸附机理。  相似文献   

9.
啤酒酵母废菌体吸附Pd2+的物理化学特性   总被引:8,自引:0,他引:8  
以啤酒酿造厂的啤酒酵母废菌体为生物吸附剂,研究死的啤酒酵母菌体从PdCl2溶液中吸附Pd2+的物理化学特性.结果表明,该菌体吸附Pd2+受吸附时间、溶液pH值、菌体浓度和Pd2+起始浓度等因素的影响.菌体吸附Pd2+是个快速的过程,吸附45min时吸附量达最大,但在最初的3min内,吸附量可达到最大吸附量的92%.在5~60℃范围内,吸附作用不受温度影响.吸附作用的最适pH值为3.5.在Pd2+起始质量浓度为30~300mg/L范围内和菌体质量浓度为2g/L的条件下,菌体对Pd2+的吸附作用符合Langmuir和Freundlich等温吸附模型.在pH=3.5,Pd2+与菌体质量比为0.2和30℃条件下吸附60min,吸附量达94.5mg/g.从废钯催化剂处理液回收钯,吸附量为32.2mg/g.XPS分析表明,该菌体能吸附水溶液中的Pd2+.TEM结果表明,在无外加电子供体时,死的啤酒酵母废菌体能够吸附和还原溶液中的Pd2+成Pd0微粒,Pd0微粒可进一步形成有一定形状的钯晶粒;该菌体还能使吸附在γ-Al2O3上的Pd2+还原成Pd0.  相似文献   

10.
《Solid State Sciences》2012,14(2):202-210
Waste materials from industries such as food processing may act as cost effective and efficient biosorbents to remove toxic contaminants from wastewater. This study aimed to establish an optimized condition and closed loop application of processed orange peel for metals removal. A comparative study of the adsorption capacity of the chemically modified orange peel was performed against environmentally problematic metal ions, namely, Cd2+, Cu2+ and Pb2+, from aqueous solutions. Chemically modified orange peel (MOP) showed a significantly higher metal uptake capacity compared to original orange peel (OP). Fourier Transform Infrared (FTIR) Spectra of peel showed that the carboxylic group peak shifted from 1637 to 1644 cm−1 after Pb (II) ions binding, indicated the involvement of carboxyl groups in Pb(II) ions binding. The metals uptake by MOP was rapid and the equilibrium time was 30 min at constant temperature and pH. Sorption kinetics followed a second-order model. The mechanism of metal sorption by MOP gave good fits for Freundlich and Langmuir models. Desorption of metals and regeneration of the biosorbent was attained simultaneously by acid elution. Even after four cycles of adsorption-elution, the adsorption capacity was regained completely and adsorption efficiency of metal was maintained at around 90%.  相似文献   

11.
设计了一种基于铁氰化钴钠的新型薄膜扩散梯度(DGT)被动采样装置, 将其应用于高盐度水体中铵离子的定量采集. 采用双滴加法制备铁氰化钴钠, 并利用扫描电子显微镜(SEM)、 X射线衍射(XRD)仪和氮气吸 附-脱附测试对其表面形貌、 晶体结构和孔结构特征进行表征. 研究了铁氰化钴钠对铵离子的吸附速率和吸附容量. 建立了以琼脂糖凝胶为扩散相、 铁氰化钴钠为结合相的DGT被动采样装置. 研究了采集时间、 水体pH值和共存阳离子对基于铁氰化钴钠的DGT技术采集铵离子的影响. 实验结果表明, 铁氰化钴钠吸附铵离子在60 min时基本达到了吸附平衡; 当铵离子初始浓度为300 mg/L时其吸附容量为90 mg/g. DGT装置结合铵离子的质量随着布置时间的增加呈现线性增长(0~24 h, r2=0.994). 当pH=4~8, Na+浓度为0~10000 mg/L, K+浓度为0~25000 mg/L, Mg2+浓度为0~20000 mg/L, Ca2+浓度为0~25000 mg/L时, DGT装置累积的铵离子质量没有明显的变化. 实验结果表明, 使用基于铁氰化钴钠的DGT装置可以准确有效地采集高盐度水体中的铵离子.  相似文献   

12.
An Ag-MnFe2O4-bentonite composite was synthesized by a chemical co-precipitation method and used for adsorption removal of Pb(Ⅱ), Cd(Ⅱ) and disinfection. The result of X-ray diffraction indicate that the diffraction peaks of MnFe2O4 and Ag can be perfectly indexed to the cubic spinel MnFe2O4(JCPDS No.88-1965) and metallic Ag(JCPDS No.41-1402), respectively. The results of scanning electron microscopy and energy dispersive X-ray spectroscopy manifest the deposition of MnFe2O4 and Ag on the bentonite surface and the presence of Mn, Fe and Ag. The result of X-ray photoelectron spectroscopy displayed that the composition of Ag-MnFe2O4-bentonite was Mn(Ⅱ), Fe(ⅡI) and metallic Ag. The analysis of Brunauer-Emmett-Teller showed that the specific surface area of Ag-MnFe2O4-bentonite was the largest compared with that of bentonite, MnFe2O4 and MnFe2O4-bentonite. Thermodynamic studies revealed that the adsorption of Pb(Ⅱ) and Cd(Ⅱ) ions was spontaneous and endothermic. Langmuir model showed an adsorption capacity of 129.87 mg/g for Pb(Ⅱ) and 48.31 mg/g for Cd(Ⅱ) ions. The adsorption kinetics of Pb(Ⅱ) and Cd(Ⅱ) ions onto Ag-MnFe2O4-bentonite can be best described by a pseudo-second-order model. The adsorption rate constant of the pseudo-second-order model was 0.0019 g·mg-1·min-1 for Pb(Ⅱ) and 0.0065 g·mg-1·min-1 for Cd(Ⅱ) ions. In addition to the adsorption experiment, the antibacterial properties of Ag-MnFe2O4-bentonite were studied through plate count method. Gram-negative(G-) bacteria Escherichia coli and Gram-positive(G+) bacteria Lactobacillus plantarum were used to test the antibacterial properties. The results showed that the composite demonstrated excellent antibacterial activity. Thus, Ag-MnFe2O4-bentonite can be employed as an adsorbent as well as an antimicrobial agent.  相似文献   

13.
Cucumber peels biosorption efficiency for copper(II) and lead(II) was studied in batch mode. The optimum conditions for removal of Cu(II) and Pb(II) ions were found to be pH 5.0, biosorbent dose of 0.1 g, contact time of 60 and 85 minutes, and initial concentration of 100 and 150 mg/L, respectively. The kinetic data were best described by pseudo-second order model. The biosorption process followed by the Langmuir isotherm model. Maximum monolayer biosorption capacities were 88.50 and 147.06 mg/g for Cu(II) and Pb(II) ions, respectively. Thermodynamic parameters suggest that the biosorption process is spontaneous and endothermic. Desorption studies were carried out with different desorbing agents.  相似文献   

14.
《印度化学会志》2021,98(12):100229
The coal fly ashes contain high concentration of toxic metals. The sorption plays crucial part to retard the movement of contaminants through the liner. In the present investigation to examine the potential of fine-grained soil as liner material, obtained from bank of River Ganga, was assessed in terms of its adsorption capability. Batch adsorption of Pb(II) and Cr(VI) were performed. Maximum adsorption of Cr(VI) (65.76%) at pH 3 for adsorbate and adsorbent dose of 5 ​mg/L and 2 ​g/L and maximum adsorption of Pb(II) (96.84%) at pH 5 for adsorbate and adsorbent dose of 5 ​mg/L and 1.5 ​g/L, respectively, were observed. Adsorption of Pb(II) and Cr(VI) follow Freundlich isotherm equation. The soil column studies were performed at various bed heights (2, 3 and 5 ​cm) in down flow mode. The tracer studies were conducted using NaCl to estimate the hydrodynamic parameters and they were considered as input parameters for modelling of fate and transport of contaminants in soil using HYDRUS 1D software for assessing the potential use of soil as liner material in ash pond structures.  相似文献   

15.
将核酸构象转换与纳米孔膜技术联用设计了一种新型高灵敏电化学传感器, 实现了对Hg 2+, Pb 2+和Sr 2+的分步同时检测. 使用2种分别能与Hg 2+及Pb 2+, Sr 2+结合的核酸适体, 将其固定在氧化铝纳米孔膜孔道内以阻碍铁氰化钾离子传导. 利用核酸适体包裹目标物时的蜷缩状态与目标物被洗脱剂洗脱后核酸适体的伸展状态之间的构象转换, 控制纳米孔通道的“开”和“关”, 使铁氰化钾溶液的氧化还原电流发生改变. 通过监测铁氰化钾溶液的电信号变化值, 可实现同时检测此3种金属离子的目的. 实验结果表明, 该传感器对3种金属离子具有很高的灵敏度和选择性, 检测的线性范围均为0.051.50 nmol/L, 对Hg 2+, Pb 2+和Sr 2+的检出限分别为0.013, 0.017和0.022 nmol/L(S/N=3).  相似文献   

16.
The sorption behaviour of Pb(II) ions onto activated carbon prepared from Citrus limettioides peel (CLPC) and seed (CLSC), which is a novel waste material, was evaluated as a function of contact time, pH, adsorbent dose, ionic strength, initial metal ion concentration and temperature in batch adsorption processes with raw Citrus limettioides peel (CLP) and seed (CLS). The maximum uptake of lead(II) ions was obtained at pH range 4.0–6.0 for CLPC, CLSC and 5.0–6.0 for raw materials (CLP, CLS). The optimal contact time was found to be 3 h. Surface morphology and functionality of the adsorbent were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis and Fourier-transform infrared (FT-IR) spectroscopy. The equilibrium data fit well with the Langmuir isotherm, confirming monolayer coverage of lead(II) ions onto CLP, CLPC, CLS and CLSC. The Langmuir monolayer adsorption capacity of CLP, CLPC, CLS and CLSC was found to be 123.60, 166.67, 15.32 and 142.86 mg/g. The calculated thermodynamic parameters showed that the sorption process was feasible, spontaneous and exothermic in nature. Kinetic studies demonstrated that adsorption of lead(II) ions followed a pseudo-second-order equation, suggesting that the adsorption process is presumably chemisorption. The adsorbents were tested for removal of Pb(II) from electroplating wastewater in connection with the reuse and selectivity of the adsorbents.  相似文献   

17.
以三维刚性结构的三蝶烯为单体, 通过简单的Friedel-Crafts烷基化反应制备得到高比表面积的三蝶烯基多孔有机聚合物(TPOP), 在TPOP中接枝乙二胺和氯乙酸钠, 构建了广谱重金属离子吸附剂(TPOP-CH2EDTA). 获得的TPOP-CH2EDTA具有微孔/介孔结构, 其微孔尺寸为1.6 nm, BET比表面积为634 m2/g, 利于重金属离子传递和配位作用的强化. TPOP-CH2EDTA对重金属离子具有吸附广谱性, 其对Ag(Ⅰ), Cu(Ⅱ), Ni(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Sn(Ⅳ), Pb(Ⅱ), Cd(Ⅱ), Fe(Ⅲ)和Cr(Ⅲ)等10种重金属离子的去除率均高于98%. 以Pb(Ⅱ)为典型的重金属污染物, 通过Langmuir模型计算得到Pb(Ⅱ)的最大吸附容量高达184.5 mg/g; 具有拟二级吸附动力学特征, 吸附速率快, 动力学常数k2为0.0173 g·mg?1·min?1; 经过5次循环使用后, Pb(Ⅱ)的去除效率仍高达95.8%. TPOP-CH2EDTA对混合溶液中Pb(Ⅱ)和Cu(Ⅱ)的去除率均高于99%, 且对含有大量无机盐[如Ca(Ⅱ), Mg(Ⅱ), K(Ⅰ)和Na(Ⅰ)离子]和有机化合物的复杂真实水体系, Pb(Ⅱ)和Cu(Ⅱ)的去除效率仍高于90%. 因此, 通过调控多孔有机聚合物微观结构(如比表面积、 孔径和吸附位点密度)而构筑的广谱性重金属吸附材料, 为协同去除复杂水系统中混合重金属离子提供了方案.  相似文献   

18.
A flow injection on-line sorption preconcentration electrothermal atomic absorption spectrometric system for fully automatic determination of lead in water was investigated. The discrete non-flow-through nature of ETAAS, the limited capacity of the graphite tube and the relatively large volume of the knotted reactor (KR) are obstacles to overcome for the on-line coupling of the KR sorption preconcentration system with ETAAS. A new FI manifold has been developed with the aim of reducing the eluate volume and minimizing dispersion. The lead diethyldithiocarbamate complex was adsorbed on the inner walls of a knotted reactor made of PTFE tubing (100 cm long, 0.5 mm i.d.). After that, an air flow was introduced to remove the residual solution from the KR and the eluate delivery tube, then the adsorbed analyte chelate was quantitatively eluted into a delivery tube with 50 μl of ethanol. An air flow was used to propel the eluent from the eluent loop through the reactor and to introduce all the ethanolic eluate onto the platform of the transversely heated graphite tube atomizer, which was preheated to 80°C. With the use of the new FI manifold, the consumption of eluent was greatly reduced and dispersion was minimized. The adsorption efficiency was 58%, and the enhancement factor was 142 in the concentration range 0.01–0.05 μg l−1 Pb at a sample loading rate of 6.8 ml min−1 with 60 s preconcentration time. For the range 0.1–2.0 μg l−1 of Pb a loading rate of 3.0 ml min−1 and 30 s preconcentration time were chosen, resulting in an adsorption efficiency of 42% and an enhancement factor of 21, respectively. A detection limit (3σ) of 2.2 ng l−1 of lead was obtained using a sample loading rate of 6.8 ml min−1 and 60 s preconcentration. The relative standard deviation of the entire procedure was 4.9% at the 0.01 μg l−1 Pb level with a loading rate of 6.8 ml min−1 and 60 s preconcentration, and 2.9% at the 0.5 μg l−1 Pb level with a 3.0 ml min−1 loading rate and 30 s preconcentration. Efficient washing of the matrix from the reactor was critical, requiring the use of the standard addition method for seawater samples. The analytical results obtained for seawater and river water standard reference materials were in good agreement with the certified values.  相似文献   

19.
The study was carried out on the sorption of heavy metals (Ni2+, Cu2+, Pb2+, and Cd2+) under static conditions from single- and multicomponent aqueous solutions by raw and pretreated clinoptilolite. The sorption has an ion-exchange nature and consists of three stages, i.e., the adsorption on the surface of microcrystals, the inversion stage, and the moderate adsorption in the interior of the microcrystal. The finer clinoptilolite fractions sorb higher amounts of the metals due to relative enriching by the zeolite proper and higher cleavage. The slight difference between adsorption capacity of the clinoptilolite toward lead, copper, and cadmium from single- and multicomponent solutions may testify to individual sorption centers of the zeolite for each metal. The decrease of nickel adsorption from multicomponent solutions is probably caused by the propinquity of its sorption forms to the other metals and by competition. The maximum sorption capacity toward Cd2+ is determined as 4.22 mg/g at an initial concentration of 80 mg/L and toward Pb2+, Cu2+, and Ni2+ as 27.7, 25.76, and 13.03 mg/g at 800 mg/L. The sorption results fit well to the Langmuir and the Freundlich models. The second one is better for adsorption modeling at high metal concentrations.  相似文献   

20.
以硅胶为核,马来海松酸丙烯酸乙二醇酯和甲基丙烯酸为功能单体,采用涂覆悬浮聚合法合成了核壳型SiO2@松香基阳离子交换树脂(SiO2@RCER),研究了其对水中微量Cd2+的静态吸附性能。结果表明,在Cd2+溶液浓度为0.5 mg·L-1,pH=6.0,温度为303 K,吸附剂用量为10 g·L-1时,Cd2+去除率可达到100%;SiO2@RCER对Cd2+的吸附符合准二级动力学方程以及Langmuir吸附等温线,表明吸附过程为单分子层化学吸附。吸附前后材料的XPS图谱表明:SiO2@RCER对Cd2+吸附主要涉及Na+以及溶液中的Cd2+的阳离子交换。该吸附剂在对Cd2+、Pb2+浓度超标的矿区废水吸附处理后,高毒重金属浓度均达到国家生活饮用水水源水质一级标准(CJ3020-93),其他离子浓度也有所降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号