首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Magnetohydrodynamic (MHD) turbulence in the solar wind is observed to show the spectral behavior of classical Kolmogorov fluid turbulence over an inertial subrange and departures from this at short wavelengths, where energy should be dissipated. Here we present the first measurements of the electric field fluctuation spectrum over the inertial and dissipative wave number ranges in a Beta > or approximately = 1 plasma. The k(-5/3) inertial subrange is observed and agrees strikingly with the magnetic fluctuation spectrum; the wave phase speed in this regime is shown to be consistent with the Alfvén speed. At smaller wavelengths krho(i) > or = 1 the electric spectrum is enhanced and is consistent with the expected dispersion relation of short-wavelength kinetic Alfvén waves. Kinetic Alfvén waves damp on the solar wind ions and electrons and may act to isotropize them. This effect may explain the fluidlike nature of the solar wind.  相似文献   

2.
We present a measurement of the spectral index of density fluctuations between ion and electron scales in solar wind turbulence using the EFI instrument on the ARTEMIS spacecraft. The mean spectral index at 1?AU was found to be -2.75±0.06, steeper than predictions for pure whistler or kinetic Alfvén wave turbulence but consistent with previous magnetic field measurements. The steep spectra are also consistent with expectations of increased intermittency or damping of some of the turbulent energy over this range of scales. Neither the spectral index nor the flattening of the density spectra before ion scales were found to depend on the proximity to the pressure anisotropy instability thresholds, suggesting that they are features inherent to the turbulent cascade.  相似文献   

3.
We present a new channel for the nonlocal transport of wave energy from the large (MHD) scales to the small (kinetic) scales generated by the resonant decay of MHD Alfvén waves into kinetic Alfvén waves. This process does not impose any restriction on the wave numbers or frequencies of initial MHD waves, which makes it superior compared to the mechanisms of spectral transport studied before. Because of dissipative properties of the nonlinearly driven kinetic Alfvén waves, the decay leads to plasma heating and particle acceleration, which is observed in a variety of space and astrophysical plasmas. Two examples in the solar corona and the terrestrial magnetosphere are briefly discussed.  相似文献   

4.
A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k(-2.8) as observed in in situ spacecraft measurements of the "dissipation range" of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfvén wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.  相似文献   

5.
The proton and electron temperature anisotropies in the solar wind are constrained by the instability thresholds for temperature-anisotropy-driven kinetic plasma instabilities. The modifications to the marginal instability conditions from accounting for the influence of damping connected with the collisional effects in the solar wind plasma are calculated for right- and left-handed polarized parallel propagating Alfvén waves and mirror and firehose fluctuations. These modifications provide tighter threshold constraints compared to the marginal thresholds but do not fully explain the observations at small values of the parallel plasma beta.  相似文献   

6.
Observations at the Earth's magnetopause identify mode conversion from surface to kinetic Alfvén waves at the Alfvén resonance. Kinetic Alfvén waves radiate into the magnetosphere from the resonance with parallel scales up to the order of the geomagnetic field-line length and spectral energy densities obeying a k(perpendicular)(-2.4) power law. Amplitudes at the Alfvén resonance are sufficient to both demagnetize ions across the magnetopause and provide field-aligned electron bursts. These waves provide diffusive transport across the magnetopause sufficient for boundary layer formation.  相似文献   

7.
This Letter presents a calculation of the power spectra of weakly turbulent Alfvén waves and fast magnetosonic waves ("fast waves") in low- plasmas. It is shown that three-wave interactions transfer energy to high-frequency fast waves and, to a lesser extent, high-frequency Alfvén waves. High-frequency waves produced by MHD turbulence are a promising explanation for the anisotropic heating of minor ions in the solar corona.  相似文献   

8.
Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities Alfvén-cyclotron waves have on proton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed and is maintained until the end of the simulation. The main part of the distribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that, even in the parameter regime where fluid theory appears to be appropriate, strong kinetic effects still prevail.  相似文献   

9.
Wave-number spectra of magnetic field fluctuations are directly determined in the terrestrial foreshock region (upstream of a quasiparallel collisionless shock wave) using four-point Cluster spacecraft measurements. The spectral curve is characterized by three ranges reminiscent of turbulence: energy injection, inertial, and dissipation range. The spectral index for the inertial range spectrum is close to Kolmogorov's slope, -5/3. On the other hand, the fluctuations are highly anisotropic and intermittent perpendicular to the mean magnetic field direction. These results suggest that the foreshock is in a weakly turbulent and intermittent state in which parallel propagating Alfvén waves interact with one another, resulting in the phase coherence or the intermittency.  相似文献   

10.
Neutral-beam-driven compressional Alfvén eigenmodes at frequencies below the ion cyclotron frequency have been observed and identified for the first time in the National Spherical Torus Experiment. The modes are observed as a broad spectrum of nearly equally spaced peaks in the frequency range from approximately 0.2omega(ci) to approximately 1.2omega(ci). The frequency has a scaling with toroidal field and plasma density consistent with Alfvén waves. The modes have been observed with high bandwidth magnetic pickup coils and with a reflectometer.  相似文献   

11.
Evidence is presented for a multitude of discrete frequency Alfvén waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments confirm wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are comparable to the scale length of electrostatic drift wave turbulence. Theoretical analysis confirms a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfvén velocity.  相似文献   

12.
We identify drift-kinetic Alfvén waves in the vicinity of a reconnection X line on the Earth's magnetopause. The dispersive properties of these waves have been determined using wavelet interferometric techniques applied to multipoint observations from the Cluster spacecraft. Comparison of the observed wave dispersion with that expected for drift-kinetic Alfvén waves shows close agreement. The waves propagate outwards from the X line suggesting that reconnection is a kinetic Alfvén wave source. Energetic O+ ions observed in these waves indicate that reconnection is a driver of auroral ion outflow.  相似文献   

13.
We present a model for compressible sub-Alfvénic isothermal magnetohydrodynamic (MHD) turbulence in low- beta plasmas and numerically test it. We separate MHD fluctuations into three distinct families: Alfvén, slow, and fast modes. We find that production of slow and fast modes by Alfvénic turbulence is suppressed. As a result, Alfvén modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfvén modes. However, fast modes show isotropy and a scaling similar to acoustic turbulence.  相似文献   

14.
Temperature anisotropy in the solar wind results from a combination of mechanisms of anisotropic heating (e.g., cyclotron-resonant heating and dissipation of kinetic Alfvén waves) and cooling (e.g., Chew-Goldberger-Low double-adiabatic expansion). In contrast, anisotropy-driven instabilities such as the cyclotron, mirror, and firehose instabilities limit the allowable departure of the plasma from isotropy. This study used data from the Faraday cups on the Wind spacecraft to examine scalar temperature and temperature components of protons. Plasma unstable to the mirror or firehose instability was found to be about 3-4 times hotter than stable plasma. Since anisotropy-driven instabilities are not understood to heat the plasma, these results suggest that heating processes are more effective than cooling processes at creating and maintaining proton temperature anisotropy in the solar wind.  相似文献   

15.
Solitary nonlinear (deltaB/B>1) electromagnetic pulses have been detected in Earth's geomagnetic tail accompanying plasmas flowing at super-Alfvénic speeds. The pulses in the current sheet had durations of approximately 5 s, were left-hand circularly polarized, and had phase speeds of approximately the Alfvén speed in the plasma frame. These pulses were associated with a field-aligned current J(parallel) and observed in low density (approximately 0.3 cm(-3)), high temperature (T(e) approximately T(i) approximately 3x10(7) K), and beta approximately 10 plasma that included electron and ion beams streaming along B. The wave activity was enhanced from below the ion cyclotron frequency to electron cyclotron and upper hybrid frequencies. The detailed properties suggest the pulses are nonlinearly steepened ion cyclotron or Alfvén waves.  相似文献   

16.
We show the first three dimensional (3D) dispersion relations and k spectra of magnetic turbulence in the solar wind at subproton scales. We used the Cluster data with short separations and applied the k-filtering technique to the frequency range where the transition to subproton scales occurs. We show that the cascade is carried by highly oblique kinetic Alfvén waves with ω(plas) ≤ 0.1ω(ci) down to k(⊥) ρ(i)~2. Each k spectrum in the direction perpendicular to B0 shows two scaling ranges separated by a breakpoint (in the interval [0.4,1]k(⊥)ρ(i): a Kolmogorov scaling k(⊥)?1?? followed by a steeper scaling ~k(⊥)????. We conjecture that the turbulence undergoes a transition range, where part of the energy is dissipated into proton heating via Landau damping and the remaining energy cascades down to electron scales where electron Landau damping may predominate.  相似文献   

17.
Enhanced plasma heat conductivity in the presence of kinetic Alfvén waves (KAW) is predicted theoretically. The enhancement is shown to be strongest when the electron collision frequency exceeds the particle transit frequency in the wave field. Alfvén waves (both KAW and ideal MHD Alfvén eigenmodes generating the KAW) are studied in a shot of the Wendelstein 7-AS stellarator. On the basis of these results, strong thermal crashes observed during bursting Alfvénic activity in the mentioned shot are explained.  相似文献   

18.
Kinetic Alfvén wave (KAW) has been an interesting topic for discussion extensively in the fields of labora-tory, space, and astrophysical plasmas. A general dispersion equation is derived from the exact two-fluid model in thisambient magnetic field. For the short wavelength cases of kλi >> 1, where λi = vA/ωci and ωci are the ion inertial lengthand gyrofrequency, respectively, our dispersion relations are appropriate for discussing effects of the ion temperatureand inertia on KAWs. The present results show that both the ion temperature and inertia can affect considerably thebehaviors of KAWs in propagation, resonance, and polarization. In particular, our results may be a great help to un-derstanding some salient features of the low-frequency (in comparison with the ion gyrofrequency ωci) electromagneticfluctuations frequently observed by the FREJA and FAST satellites in the auroral zone of the Earth's ionosphere andmagnetosphere.  相似文献   

19.
The expansion of a dense (initially, n(lpp)/n(0)>1) laser-produced plasma into an ambient magnetized plasma ( n(0) = 2 x 10(12) cm(-3)) capable of supporting Alfvén waves has been studied. The interaction results in the production of shear Alfvén waves as well as large density perturbations (Delta n/n(0) approximately 0.3) associated with the moving dense plasma. The waves propagate away from the target and are observed to become plasma-column resonances. Spatial patterns of the wave magnetic fields are measured and are used to estimate the coupling efficiency of the laser energy and the kinetic energy of the dense plasma into wave energy.  相似文献   

20.
We present a numerical analysis of an incompressible decaying magnetohydrodynamic turbulence run on a grid of 1536{3} points. The Taylor Reynolds number at the maximum of dissipation is approximately 1100, and the initial condition is a superposition of large-scale Arn'old-Beltrami-Childress flows and random noise at small scales, with no uniform magnetic field. The initial kinetic and magnetic energies are equal, with negligible correlation. The resulting energy spectrum is a combination of two components, each moderately resolved. Isotropy obtains in the large scales, with a spectral law compatible with the Iroshnikov-Kraichnan theory stemming from the weakening of nonlinear interactions due to Alfvén waves; scaling of structure functions confirms the non-Kolmogorovian nature of the flow in this range. At small scales, weak turbulence emerges with a k{perpendicular}{-2} spectrum, the perpendicular direction referring to the local quasiuniform magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号