首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
Hexa‐armed and thiophene (Thi) end‐capped poly(ε‐caprolactone) star polymer (N3P3‐(PCL‐Thi)6), containing cyclotriphosphazene core, was prepared in a four‐step reaction sequence. Ring‐opening polymerization (ROP) and “click chemistry” techniques were employed in the first and final steps, respectively. Hexa‐armed PCL star polymer (N3P3‐(PCL‐OH)6) was successfully synthesized via ROP of ε‐caprolactone (ε‐CL) by using hekzakis(p‐(hydroxymethyl)phenoxy) cyclotriphosphazene as the multisite initiator and tin(II) 2‐ethylhexanoate (Sn(Oct2)) as the catalyst in bulk at 115 °C. Further modifications of the N3P3‐(PCL‐OH)6 were accomplished by derivatization of the hydroxyl‐functional chain ends. The obtained N3P3‐(PCL‐OH)6 was then reacted with 2‐bromo‐2‐methylpropanoyl bromide, and this led to a star polymer with bromide end groups, N3P3‐(PCL‐Br)6. In the third step, N3P3‐(PCL‐Br)6 was azidified with sodium azide (NaN3) in DMF affording N3P3‐(PCL‐N3)6. Conversion of the azide chain end groups into Thi was quantitatively accomplished via the “click reaction” between N3P3‐(PCL‐N3)6 and prop‐2‐yn‐1‐yl 3‐thienyl acetate in the final step. Subsequently, the star polymer with six Thi chain ends (N3P3‐(PCL‐Thi)6) was employed in electrochemical copolymerization with both pyrrole and Thi. Electrochromic properties and electrochromic device application of N3P3‐(PCL‐Thi)6/PThi were also investigated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3668–3682, 2010  相似文献   

2.
The reaction of hexachlorocyclotriphosphazatriene (1) with p-aminophenol (2) produced two new products: the open chain compound N3P3Cl5(NHC6H4OH) (3), and the bridged compound N3P3Cl5(NHC6H4O)N3P3Cl5(4). The compounds 3 and 4 were separated and characterized by elemental analysis, massspectrometry and NMR spectroscopy. The molecular structures of compounds 3 and 4 were determined by X-ray crystallography. Compound 3 is the first example of cyclotriphosphazene including (p-hydroxyphenyl) amino group and compound 4 was the first example of the N-substituted p-aminophenoxy group with cyclotriphosphazene.  相似文献   

3.
A ferrocene dendrimer based on a cyclotriphosphazene core was prepared via a sixfold substitution reaction of N3P3Cl6 with a diferrocenyl benzyl alcohol dendron. All twelve ferrocene units in the dendrimer were found to be electrochemically equivalent.  相似文献   

4.
Abstract

Selected 4-oxybenzaldehyde and 2,2-dioxybiphenyl cyclotriphosphazene derivatives were synthesized via substitution reactions through tailored control. The reactions of cyclotriphosphazene with 4-oxybenzaldehyde and 2,2-dioxybiphenyl gave the following synthesized derivatives: one mono-substituted open-chain compound, N3P3Cl5(O2C7H5) (1, 69%); mono spiro, N3P3Cl4(O2C12H8) (2, 91.1%); non-gem tri-substituted, N3P3Cl3 (O6C21H15) (3, 17%); dispiro, N3P3Cl2(O4C24H16) (4, 92.3%); penta-substituted, N3P3Cl(O10C35H25) (5, 92%);hexa-substituted, N3P3(O12C42H30). Most of these derivatives (1–6) are obtained with good yield (up to 97%), This work provides a simple and available approach to obtain versatile cyclotriphosphazene derivatives, which is expected to further promote the use of HCCP as phosphorus platform for the construction of multi-functional materials.  相似文献   

5.
Novel hexa‐armed and pyrene (Pyr) end‐capped phosphazene dendrimer [N3P3‐(Pyr)6] and star polymer with poly(ε‐caprolactone) (PCL) arms [N3P3‐(PCL‐Pyr)6] were prepared via two series of reactions. In these series, core‐first approach was used starting from a hexa‐hydroxy functional phosphazene derivative (N3P3‐(OH)6). It was used as an initiator in the ring‐opening polymerization of ε‐caprolactone to prepare a hexa‐armed PCL star polymer (N3P3‐(PCL‐OH)6). Hydroxyl functionalities of N3P3‐(OH)6 and N3P3‐(PCL‐OH)6 were then successfully converted into bromide and azide, in turn. Further end‐group modifications of azide functional dendrimer precursor (N3P3‐(N3)6) and star polymer (N3P3‐(PCL‐N3)6) were achieved quantitatively via the Cu(I) catalyzed click reaction between azide functional groups and 1‐ethynyl pyrene in the final step. Moreover, the pyrene end‐capped phosphazene dendrimer and star polymer were used in noncovalent functionalization of multiwalled carbon nanotubes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
The solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene is demonstrated to be a new, simple and versatile solid-state templating method for obtaining single-crystal micro- and nanocrystals of transition and valve metal oxides. The technique, when applied to Mo-containing organometallics N3P3[OC6H4CH2CN·Mo(CO)5]6 and N3P3[OC6H4CH2CN·Mo(CO)4 py]6, results in stand-alone and surface-deposited lamellar MoO3 single crystals, as determined by electron and atomic force microscopies and X-ray diffraction. The size and morphology of the resulting crystals can be tuned by the composition of the precursor. X-ray photoelectron and infrared spectroscopies indicate that the deposition of highly lamellar MoO3 directly on an oxidized (400 nm SiO2) surface or (100) single-crystal silicon surfaces yields a layered uniphasic single-crystal film formed by cluster diffusion on the surface during pyrolysis of the metal-carbonyl derivatives. For MoO3 in its layered form, this provides a new route to an important intercalation material for high energy density battery materials.  相似文献   

7.
Crystal Structure of Hexamine Cyclotriphosphazene, P3N3(NH2)6 In the presence of KNH2 hexamine cyclotriphosphazene semi ammoniate (molar ratio 12:1) in NH3 gives crystals of solvent free P3N3(NH2)6 within 5 d at 130°C and p(NH3) = 110 bar. The structure was solved by X-rax methods: P3N3(NH2)6: P21/c, Z = 4, a = 10.889(6) Å, b = 5.9531(6) Å, c = 13.744(8) Å, β = 97.83(3)°, Z(Fo) = 1 721 with (Fo)2 ≥ 3σ(Fo)2, Z(var.) = 157, R/Rw = 0,036/0,041 The structure contains columns of molecules P3N3(NH2)6 all in the same orientation. The six-membered rings within one molecule have boat conformation. The columns are stacked together in a way that one is surrounded by four others shifted by half a lattice constant in direction [010]. Strong hydrogen bridge-bonds N? H…?N connect molecules within the columns and between them.  相似文献   

8.
Hexamethylhydrazinocyclotriphosphazene N3P3 (NMe-NH2)6 1 is a useful precursor for the synthesis of functionalized hexahydrazones ( 3a-f ), multicyclic ( 5 ) and multimacrocyclic ( 7 ) species, and small dendrimers ( 8 and 10 ). © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The geometric structure of monophenoxy-substituted cyclotriphosphazene P3N3Cl5OC6H5 conformers and nongeminally substituted cis, nongeminally substituted trans, and geminally substituted trans-P3N3Cl4(OC6H5)2 diphenoxy derivatives of cyclotriphosphazene was determined by the nonempirical Hartree-Fock and Kohn-Sham methods. These compounds can be used as templates for valence and programmed supramolecular synthesis. Secondary interactions between phenoxy groups stabilizing the molecular structure of the template were revealed and quantitatively analyzed in terms of electron and electron energy densities for nongeminally substituted cis-P3N3Cl4(OC6H5)2.  相似文献   

10.
A novel hexa‐armed and star‐shaped polymer containing cholesterol end‐capped poly(ε‐caprolactone) arms emanating from a phosphazene core (N3P3‐(PCL‐Chol)6) was synthesized by a combination of ring‐opening polymerization and “click” chemistry techniques. For this purpose, the terminal ? OH groups of the synthesized precursor (N3P3‐(PCL‐OH)6) were converted into Chol through a series of reaction. Both N3P3‐(PCL‐OH)6 and N3P3‐(PCL‐Chol)6 were then employed in the preparation of supramolecular inclusion complexes (ICs) with β‐cyclodextrin (β‐CD). The latter formed ICs with β‐CD in higher yield. The host–guest stoichiometry (ε‐CL:β‐CD, mol:mol) in the ICs of N3P3‐(PCL‐Chol)6 was found to be 1.2. The formation of supramolecular ICs of N3P3‐(PCL‐Chol)6 with β‐CD was confirmed by using Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopic methods, wide‐angle X‐ray diffraction (WAXD), and thermal analysis techniques. WAXD data showed that the obtained ICs with N3P3‐(PCL‐Chol)6 had a channel‐type crystalline structure, indicating the suppression of the original crystallization of N3P3‐(PCL‐Chol)6 in β‐CD cavities. Moreover, the thermal stabilities of ICs were found to be higher than those of the free star polymer and β‐CD. Furthermore, the surface properties of N3P3‐(PCL‐Chol)6 and its ICs with β‐CD were investigated by static contact angle measurements. The obtained results proved that the wettability of N3P3‐(PCL‐Chol)6 successfully increased with the formation of its ICs with β‐CD. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3406–3420  相似文献   

11.
Reaction of hexachlorocyclotriphosphazene, N3P3Cl6 (1), with the sodium derivative of the fluorinated diol, 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol, (2), in THF solution at room temperature afforded five products, whose structures have been characterised by 1H, 19F and 31P NMR spectroscopy: the mono-ansa compound N3P3Cl4[OCH2(CF2)4CH2O] (3); the single-bridged compound N3P3Cl5[OCH2(CF2)4CH2O]N3P3Cl5 (4), two double-bridged compounds N3P3Cl4(OCH2(CF2)4CH2O)2N3P3Cl4, (5-anti, 5-syn) and the triple-bridged compound N3P3Cl3(OCH2(CF2)4CH2O)3N3P3Cl3 (6). X-ray crystallographic studies confirmed the structures of the ansa compound (3), the double-bridged compound (5-anti) and the first example of a triple-bridged cyclotriphosphazene derivative (6). The results were also compared with those for reactions of (1) with analogous fluorinated shorter diols (1,4-butane- and 1,5-pentane-diols). It is found that on increasing the chain length of the diol, there is a decrease in the relative proportion of intramolecular reactions giving spiro and ansa derivatives and an increase in the amount of bridged cyclophosphazene derivatives via intermolecular reactions.  相似文献   

12.
Hexakis (2‐halo‐anilino) cyclotriphosphazenes (2‐X‐C6H4NH)6P3N3 {X = F ( 1d ), Cl ( 1e ), Br ( 1f )} were prepared by refluxing mixtures of hexachloro cyclotriphosphazene, 2‐haloaniline and triethylamine in toluene and characterized by single crystal X‐ray diffraction. 1d , 1e and 1f were reacted with nBuLi in thf. Reactions were monitored with 31P NMR. Addition of three equivalents of nBuLi yields lithium complexes of trianionic phosphazenates [{(thf)2Li}3{(2‐X‐C6H4N)3(2‐X‐C6H4NH)3P3N3}] {X= F ( 2d ), Cl ( 2e ) and Br ( 2f )}. 2d , 2e and 2f were structurally characterized by X‐ray diffraction, which reveals monomeric cis‐metalated phosphazenates featuring central P3N3 ring systems of chair conformation. Lithium ions reside in three N(eq)‐P‐N(endo) chelation sites at one face of the P3N3 ring system. Li…X distances are rather long (> 3Å) indicating no Li‐X interactions.  相似文献   

13.
35Cl NQR has been investigated in two cyclotriphosphazene derivatives N3P3Cl4Ph2 and N3P3Cl4(NMe2)2. The observed frequencies are assigned to the various chlorines and the temperature variation of the NQR frequencies studied in the range from 77 K to 300 K. The results are analysed using the Bayer-Kushida-Brown approach. Torsional (librational) frequencies are found to fall in the range 10–25 cm?1 and are found to be only slightly temperature dependent.  相似文献   

14.
The new cyclotriphosphazene derivative N3P3(OC6H3OCH3COH)6 ( 1 ) was synthesized from hexachlorocyclotriphosphazene, N3P3Cl6, and 4‐hydroxy‐3‐methoxybenzaldehyde in acetonitrile in the presence of K2CO3. The structure of 1 was verified by means of elemental analysis, IR, 1H NMR, 13C NMR, 31P NMR spectra, thermal analysis and X‐ray diffraction.  相似文献   

15.
Given the importance of quinazolinones and carbonylative transformations, a palladium‐catalyzed four‐component carbonylative coupling system for the synthesis of diverse 4(3H)‐quinazolinone in a concise and convergent fashion has been developed. Starting from 2‐bromoanilines (1 mmol), trimethyl orthoformate (2 mmol), and amines (1.1 mmol), under 10 bar of CO, the desired products were isolated in good yields in the presence of Pd(OAc)2 (2 mol %), BuPAd2 (6 mol %) in 1,4‐dioxane (2 mL) at 100 °C, using N,N‐diisopropylethylamine (2 mmol) as the base. Notably, the process tolerates the presence of various reactive functional groups and is very selective for quinazolinones, and was used in the synthesis of the precursor to the bioactive dihydrorutaempine.  相似文献   

16.
The synthesis of oligonucleotides containing 7-(2-deoxy-β -D -erythro-pentofuranosyl)adenine (N7Ad; 1 ) is described. Compound 1 was obtained from the precursor 4-amino-1H -imidazole-5-carbonitrile 2-deoxyribonucleoside 6 and was found to be much more labile than Ad. The N6-benzoyl protecting group (see 8 ) destabilized the N-glycosylic bond further and was difficult to remove by NH3-catalyzed hydrolysis. Therefore, a (dimethyl-amino)methylidene residue was introduced (→ 9 ). Amidine 9 was blocked at OH? C(5′) with the dimethoxytrityl residue ((MeO)2Tr), and phosphonate 4 as well as phosphoramidite 5 were prepared under standard conditions. Phosphonate 4 was employed in solid-phase oligonucleotide synthesis. Homooligonucleotides as well as self-complementary oligonucleotides were prepared. The oligomer d[(N7A)11-A] ( 11 ) formed a duplex with d(T12) ( 13 ). Antiparallel chain polarity and reverse Watson-Crick base pairing was deduced from duplex formation of the self-complementary d[(N7A)8-T8] ( 14 ).  相似文献   

17.
Nitridophosphates exhibit an intriguing structural diversity with different structural motifs, for example, chains, layers or frameworks. In this contribution the novel nitridophosphate Sr3P3N7 with unprecedented dreier double chains is presented. Crystalline powders were synthesized using the ammonothermal method, while single crystals were obtained by a high-pressure multianvil technique. The crystal structure of Sr3P3N7 was solved and refined from single-crystal X-ray diffraction and confirmed by powder X-ray methods. Sr3P3N7 crystallizes in monoclinic space group P2/c. Energy-dispersive X-ray and Fourier-transformed infrared spectroscopy were conducted to confirm the chemical composition, as well as the absence of NHx functionality. The optical band gap was estimated to be 4.4 eV using diffuse reflectance UV/Vis spectroscopy. Upon doping with Eu2+, Sr3P3N7 shows a broad deep-red to infrared emission (λem=681 nm, fwhm≈3402 cm−1) with an internal quantum efficiency of 42 %.  相似文献   

18.
A total synthesis of racemic 3-deoxy-7,8-dihydromorphine ((±)- 2 ) and 4-me-thoxy-ALmethylmorphinan-6-one ((±)- 3 ) is described. The key intermediate was 2,4-dihydroxy-N-formylmorphinan-6-one (11) , obtained from 3,5-dibenzyloxy-phenylacetic acid (4) in 41.8% overall yield. Bromination of 11 , and treatment with aqueous NaOH-solution afforded, after N-deblocking and reductive N-methylation with concomitant removal of the aromatic bounded Br-atom, the morphinanone 14. Elimination of the HO–C(2) group in 14 was accomplished by hydrogenolysis of its N-phenyltetrazolyl ether 15 , to give 3-deoxy-6,0-didehydro-7,8-dihydromorphine (16). Reduction of 16 with L-Selectride at low temperature provided (±)- 2 in high yield. The ether 15 directly afforded, under more vigorous reduction conditions, 4-hydroxy-N-methylmorphinan-6-one (17). and after O-methylation of 17 , the methyl ether (±)- 3 was obtained. A (1:l)-mixture of 4-hydroxy-2-methoxy-N-methylmor-phinan-6-one (28) and its 2-hydroxy-4-methoxy isomer 30 svere obtained by Grewe-cyclization of a mono-methoxylated aromatic precursor similar to that which afforded 11. The 2,4-dioxygenated N-methylmorphinan-6-ones 29 , 31 and 38 were also prepared and characterized.  相似文献   

19.
Abstract

A series of novel side group-modified cyclotriphosphazene derivatives were synthesized by the reaction of hexachlorocyclotriphosphazene [N3P3Cl6] with 2,2′-diphenol and the potassium salt of 4-hydroxybenzaldehyde, and subsequent reduction of aldehyde groups to alcohol groups by the use of sodium borohydride. The bromination reaction was carried out with PBr3 to give N3P3(O2C12H8) (p-BrCH2-C6H4-O-)4. This compound was employed in reactions with macrocyclic polyamides, imidazole, or morpholine to produce title compounds. The target compounds were characterized by 1H NMR, 31P NMR, 13C NMR, and electrospray ionization mass spectrometry.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

20.
The first crystalline phosphorus oxonitride imide H3P8O8N9 (=P8O8N6(NH)3) has been synthesized under high‐pressure and high‐temperature conditions. To this end, a new, highly reactive phosphorus oxonitride imide precursor compound was prepared and treated at 12 GPa and 750 °C by using a multianvil assembly. H3P8O8N9 was obtained as a colorless, microcrystalline solid. The crystal structure of H3P8O8N9 was solved ab initio by powder X‐ray diffraction analysis, applying the charge‐flipping algorithm, and refined by the Rietveld method (C2/c (no. 15), a=1352.11(7), b=479.83(3), c=1820.42(9) pm, β=96.955(4)°, Z=4). H3P8O8N9 exhibits a highly condensed (κ=0.47), 3D, but interrupted network that is composed of all‐side vertex‐sharing (Q4) and only threefold‐linking (Q3) P(O,N)4 tetrahedra in a Q4/Q3 ratio of 3:1. The structure, which includes 4‐ring assemblies as the smallest ring size, can be subdivided into alternating open‐branched zweier double layers {oB,${2{{2\hfill \atop \infty \hfill}}}$ }[2P3(O,N)7] and layers containing pairwise‐linked Q3 tetrahedra parallel (001). Information on the hydrogen atoms in H3P8O8N9 was obtained by 1D 1H MAS, 2D homo‐ and heteronuclear (together with 31P) correlation NMR spectroscopy, and a 1H spin‐diffusion experiment with a hard‐pulse sequence designed for selective excitation of a single peak. Two hydrogen sites with a multiplicity ratio of 2:1 were identified and thus the formula of H3P8O8N9 was unambiguously determined. The protons were assigned to Wyckoff positions 8f and 4e, the latter located within the Q3 tetrahedra layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号