首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of silica xerogels was synthesized by using TEOS as the silica precursor and a non ionic surfactant Triton X100 (TX100) and a cationic surfactant Hexadecyltrimethylammonium Bromide (CTAB) as templates. The xerogels were synthesized through 2‐way catalysis using ultrasonic radiations for homogeneous mixing of the precursors and template. The surfactant template was later removed through calcination at 550 °C. It was found out that gels having CTAB as the template had higher surface area (612.08 m2/g) than the gels templated by TX100 (539.6 m2/g). High surface area xerogels were used in adsorption experiments for aqueous solutions of Rhodamine 6G (R6G). UV visible spectroscopy was used to find out the concentrations of dye solutions. The adsorption data of both the types of xerogels was found to follow Freundlich's adsorption model pointing towards the possibility of adsorption of the dye molecules on the heterogeneous surface of the adsorbent.  相似文献   

2.
Crystalline vanadium pentoxide with hierarchical mesopores was synthesized by using a CTAB/BMIC cotemplate (CTAB=cetyltrimethylammonium bromide, BMIC=1‐butyl‐3‐methylimidazolium chloride). The material was fully characterized by SEM, TEM, N2 adsorption–desorption, XRD, XPS, and CV methods. By elaborate adjustment of the template proportions, the distribution and size of the hierarchical pores were tuned successfully. CTAB cationic surfactant contributed more to the larger mesopores, whereas BMIC ionic liquid was beneficial in forming the smaller nanopores. The vanadium‐containing anions combined with CTA+ micelles and BMI+ rings through electrostatic interactions. The CTA+–O(VO)O?–BMI+ entities built up an orderly array, which finally formed the hierarchical mesoporous framework during thermal treatment. The mesoporous vanadium pentoxide directed by the cotemplate of CTAB/BMIC=1:1 showed many orderly crystalline structures and demonstrated a large capacitance (225 F g?1); it is thus a promising material for electrochemical capacitors. Two alternative solutions to the disappearance of capacitance due to insertion of K+ are proposed in view of possible future applications.  相似文献   

3.
Using the mixture of cetyltrimethylammonium bromide (CTAB) and p‐Octyl polyethylene glycol phenyl ether (OP‐10) as templates, siliceous MCM‐48 materials can be synthesized with low molar ratio of CTAB to silica (0.139:1) and low concentration of mixed surfactants (ca.5%) and within a wide range of OP‐10/CTAB ratio (0.08?0.25). The materials were characterized by X‐ray powder diffraction, N2 adsorption/desorption isotherm, TEM, TG‐DSC and 29Si MAS NMR. Measurements indicated that the use of mixed surfactants allowed better condensation and higher ordering of the cubic mesostructure; at the same time, some properties of these materials were sensitive to the OP‐10/CTAB ratio. It was also found that the reduced pH of the gel which had been crystallized for a certain time gave a highly reproducible synthesis with a high silica yield (about 95%). Furthermore, the reaction mechanism of the synthesis is discussed in detail.  相似文献   

4.
TiO2 nanocrystals with diameters 8–10 nm have been prepared through sol–gel method using a mixed template of polyethylene glycol (PEG) and cetytrimethylammonium bromide (CTAB) at low temperature. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution (HR) TEM and fourier transform infrared spectroscopy (FT-IR) etc. XRD analysis showed the TiO2 photocatalysts prepared with mixed template are pure anatase. FTIR spectrum revealed that the cationic surfactant provides CTA+ molecules and bonds to Ti–O to prevent the condensation reaction. PEG plays a dispersant role in controlling the structure of nano-TiO2 particles. CTAB and PEG incorporated with each other to restrain the growth of crystal nucleus and control the size of grain. The self-assembling process has been confirmed by HRTEM. PEG played different role in mixed template from the single template. The photocatalytic activity of samples was determined by using as a model reaction. The results showed that TiO2 photocatalysts with mixed template have higher photocatalytic activity than P25.  相似文献   

5.
Structurally ordered MCM-48 silicas were facilely synthesized using the mixtures of cetyltrimethylammonium bromide (CTAB) and p-Octyl polyethylene glycol phenyl ether (OP-10) as co-templates with low molar ratio of CTAB to silica (0.139:1) and low concentration of mixed surfactants (ca. 5%) and within a wide range of OP-10/CTAB ratio (0.08–0.25). For comparison purpose, the cubic material was also prepared with only CTAB as the structure-directing agent under the same preparation conditions. The products obtained by different templating method were thoroughly characterized by XRD, N2 sorption, TEM, TG-DSC and 29Si MAS NMR. Measurement results from these techniques indicated that the introduction of nonionic OP-10 had significant effect on the structural properties of MCM-48 and the mixed surfactants' route allowed an efficient synthesis and a more condensed product compared to the only cationic CTAB templating protocol. Finally, our preliminary explanation for that why cubic MCM-48 materials could be obtained in this system and structural properties were sensitive to the OP-10/CTAB ratios was discussed in detail.  相似文献   

6.
A novel strategy for preparing highly sensitive and easily renewable molecularly imprinted polymer (MIP) sensors was proposed. Using melamine (MA) as the template molecule, MIP particles were synthesized and embedded in a solid paraffin carbon paste to prepare the MIP sensor. MA was indirectly determined from the competition between the reactions of MA and horseradish peroxidase-labeled MA (MA-HRP) with the vacant cavities. The detection signals were amplified because of enzymatic reaction to the H2O2 catalytic oxidation. Sensitivity was markedly improved. Sensor renewal was achieved by a simple mechanical polishing of the sensitive film. The linear range for MA detection was 0.005–1 μmol L−1 and the detection limit was 0.7 nmol L−1. The molecularly imprinted solid paraffin carbon paste sensor was used for MA detection in milk samples.  相似文献   

7.
The interaction between N, N′-bis(dimethyldodecyl)-1,6-hexanediammoniumdibromide (G12-6-12) and cetyltrimethylammonium bromide (CTAB) in D20 aqueous medium has been investigated by NMR at 298 K. The G12-6-12 and CTAB are about 0.773 and measured critical micelle concentration (cmc) of 0.668 mmol/L, respectively. The cmc^* (cmc of mixture) values are less than CMC^* (cmc of ideally mixed solution) in the mixed system, and the interaction parameter βM〈0 at different molar fractions α of G12-6-12 in the mixed systems, but just when α≤0.3, cmc^* values are much smaller than CMC^*, and βM satisfies the relation of |βM|〉|ln(cmc1/cmc2)| (cmcl: cmc of pure G12-6-12 and cmc2: cmc Of pure CTAB). The results indicate that there exists synergism between G12-6-12 and CTAB, and they can form mixed micelles, which is further proven by 2D NOESY and self-diffusion coefficient D experiments. There are intermolecular cross peaks between G12-6-12 and CTAB in 2D NOESY, and the radius of micelles in mixed solution is bigger than that in G12-6-12 pure solution in D experiments, indicating there are mixed micelles. However, when α〉0.3, we find that cmc^*≈CMC^*, βM≈0, obviously, the two surfactants are almost ideal mixing fitting the pseudo-phase separation model and regular solution theory.  相似文献   

8.
以混合表面活性剂为模板可控合成MCM-48和MCM-41分子筛   总被引:2,自引:0,他引:2  
利用阳离子和三嵌段共聚物混合表面活性剂为模板,在水热条件、碱性介质中可控合成出MCM-48和MCM-41分子筛。在固定P123(聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物):TEOS(正硅酸乙酯)(物质的量的比)为0.01875的体系中,调节CTAB(十六烷基三甲基溴化铵)∶TEOS(正硅酸乙酯)物质的量比值m,当m在0.12~0.13范围合成出MCM-48分子筛;当m在0.04~0.08范围合成出MCM-41分子筛。通过XRD,TEM,N2物理吸附,IR等方法进行了表征。结果表明:聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物(P123)的加入可以更大程度地降低合成介孔材料所需阳离子表面活性剂的用量;可控合成的介孔材料具有高比表面积、高度有序的孔道结构、较集中的孔径分布。  相似文献   

9.
A new nanocomposite of poly(o‐methoxyaniline) (POMA) is introduced by overlayer formation of POMA on silica. The key appealing feature of the synthesis is the role of silica sulfuric acid (SSA) both as solid acid dopant and template in overlayer self‐assembly of POMA on silica surface. Hereon siloxide group (Si―O?) of silica surface is replaced with dopant anion of SSA (≡Si―O―SO3?), which leads to formation of a overlayer of POMA on the silica surface. The composite particles are spherical in the nanoscale range of 50 nm without application of any external template (no‐template synthesis). Nanocomposite was fully characterized by various instrumentation methods: Fourier transform infrared (FT‐IR), ultraviolet–visible (UV–vis), thermogravimetric analysis (TGA), diffrential thermal analysis (DTA), elemental analysis (CHNS), energy dispersive X‐ray (EDX), X‐ray photoelectron spectroscopy (XPS) and X‐ray difraction (XRD). Based on XPS and CHNS results, it is demonstrated that the doping level of POMA is as high as 50% and for the first time the ratio of 4:2:2 is obtained for ―NH― (amine): ―HN.+― (polarons): ?HN+― (bipolarons), respectively. In fact, bipolarons may also coexist with polarons with a 1:1 ratio of them. Moreover, the synthesis benefits from the perspective of green chemistry which is preparation under solid‐state (solvent‐free) condition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.

Mesoporous ZSM-5 was prepared from iron ore tailings (IOT) using a two-step process. Mesoporous MCM-41 was first synthesized using cetyltrimethylammonium bromide (CTAB) as mesoporous template and IOT as silica source. The CTAB in the as-synthesized MCM-41 was used as the mesoporogen to produce the mesoporous ZSM-5, by recrystallizing the amorphous walls of MCM-41 with tetrapropylammonium bromide (TPABr) as the structure-directing agent via solid-phase conversion. To evaluate the textural properties of mesoporous ZSM-5, the as-synthesized samples were characterized using x-ray diffraction, scanning electron microscopy, transmission electron microscopy, 29Si, 27Al magic angle spinning nuclear magnetic resonance spectroscopy, and nitrogen adsorption. The results show that phase separation between the surfactant and zeolite crystals was avoided in the solid-phase conversion process, which transforms the as-synthesized MCM-41 to mesoporous zeolite. Therefore, the synthetic route presented herein provides a novel method for the synthesis of mesoporous ZSM-5 from IOT.

  相似文献   

11.
Mesoporous silica materials were synthesized using tetraеthoxysilane as precursor and liquid crystals formed in aqueous mixtures of cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) as templates, without and with the addition of NaBr or Na2SO4. For this purpose, the formation of liquid crystals as a function of the ratio of CTAB and SDS under different conditions was studied. It was found that liquid crystals formed in the mixed system of CTAB and SDS at certain mixing ratios are well-structured templates for the synthesis of mesoporous silicas. The synthesized silica materials were characterized by transmission electron microscope and nitrogen adsorption/desorption analysis. The pore size of mesoporous silicas could be controlled between 3 to 6 nm by simply changing the concentration of NaBr in solution. The mesoporous silicas exhibited lamellar structure and the order of structural arrangement was promoted with addition of NaBr. However, addition of Na2SO4 led to ink-bottle type pores of mesoporous silica with a narrow pore size distribution of around 2 nm and a higher specific surface area of 610 m2 g–1.  相似文献   

12.
Self-organization and catalytic activity of supramolecular systems based on a series of O-alkylated p-sulfonatocalix[n]arenes (SCA: n = 4, 6, 8; R = Bu, Oct, Dod (Oct is octyl, Dod is dodecyl)) and cetyltrimethylammonium bromide (CTAB) were studied by dynamic light scattering, tensimetry, and spectrophotometry. In aqueous solutions containing SCA (10-6-10-4 mol L-1) and CTAB (10-2-10-12 mol L-1), mixed associates and SCA—CTAB micelles are formed in a wide concentration range. Their sizes (100–300 nm), properties, and reactivity depend mainly on the structure and concentration of the starting components, as well as on the nature of their associates in solutions. A relationship between the nonlinear concentration dependences of the sizes of SCA—CTAB micelles (SCA: n = 4, 6, 8; R = Dod) and their catalytic activity in the hydrolysis of O-ethyl O-(4-nitrophenyl) chloromethylphosphonate was established. The study of the physiological effect on plant cells in solutions of SCA (n = 6; R = Dod), CTAB, and their mixtures showed that SCA and CTAB exerted opposite effects on the energy exchange in the wheat root cells, while a mixed solution of these substances (1: 1) has almost no effect on the physiological state of the roots, which is due to the formation of stable CTAB—SCA aggregates that protect the biosystem from the action of the starting components.  相似文献   

13.
A new dual soft‐template system comprising the asymmetric triblock copolymer poly(styrene‐b‐2‐vinyl pyridine‐b‐ethylene oxide) (PS‐b‐P2VP‐b‐PEO) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to synthesize hollow mesoporous silica (HMS) nanoparticles with a center void of around 17 nm. The stable PS‐b‐P2VP‐b‐PEO polymeric micelle serves as a template to form the hollow interior, while the CTAB surfactant serves as a template to form mesopores in the shells. The P2VP blocks on the polymeric micelles can interact with positively charged CTA+ ions via negatively charged hydrolyzed silica species. Thus, dual soft‐templates clearly have different roles for the preparation of the HMS nanoparticles. Interestingly, the thicknesses of the mesoporous shell are tunable by varying the amounts of TEOS and CTAB. This study provides new insight on the preparation of mesoporous materials based on colloidal chemistry.  相似文献   

14.
混合表面活性剂与调节pH值法高效合成MCM-48   总被引:2,自引:0,他引:2  
翟尚儒  张晔  吴东  孙予罕 《化学学报》2003,61(3):345-349
以正硅酸乙酯(TEOS)为硅源、十六烷基三甲基溴化铵(CTAB)与曲拉通X- 100(TX-100)热合成中孔MCM-48.在合成过程中通过调节溶液pH值可有效提高MCM- 48的收率和水热稳定性,同时采用剂使模板剂的利用效率达到了6.0TEPOS/1.0 Surf.并通过XRD、N_2-吸附/脱附和FT-IR等测试手段对产物进行了表征.  相似文献   

15.
A series of uniform, monodispersed Gd(OH)3:Eu3+ nanospheres less than 100 nm were successfully synthesized with iron ions as catalyst and DMF as solvent under the solvothermal condition. Cetyltrimethyl ammonium bromide (CTAB) and Polyvinylpyrrolidone (PVP) were performed as co-surfactant during this facile procedure should be changed as A series of uniform, monodisperse Gd(OH)3:Eu3+ nanospheres less than 100 nm in diameter were successfully synthesized with solvothermal method. Iron ion was used as catalyst and Dimethylformamide (DMF) as solvent, Cetyltrimethyl Ammonium Bromide (CTAB) and Polyvinylpyrrolidone (PVP) were performed as surfactants. Further calcination process was applied to prepare Gd2O3:Eu3+ nanoshpheres during this facile procedure.  相似文献   

16.
通过添加烷基季铵盐类表面活性剂来调控材料形貌和粒径的改性方法,在LiNi0.8Co0.1Mn0.1O2前驱体合成过程中添加表面活性剂十二烷基三甲基溴化铵(DTAB)和十六烷基三甲基溴化铵(CTAB),利用尿素作为配合剂和沉淀剂,采用溶剂热法合成LiNi0.8Co0.1Mn0.1O2前驱体。最后,高温混锂煅烧合成椭球形的空心多孔材料。相比于不添加表面活性剂的样本,改性的材料有着更小的粒径和更加规整的形貌。电化学测试表明,添加DTAB和CTAB之后,首次充电容量分别达到223与251 mAh·g-1(0.1C)。其中,添加CTAB的样品首次放电容量达到216 mAh·g-1(0.1C),100次循环后容量保持率为85.1%,高于LiNi0.8Co0.1Mn0.1O2的81.7%(0.1C)。表面活性剂的改性显著提高了材料的电化学性能,为高镍三元正极材料的改性提供了一种新的思路。  相似文献   

17.
Uniform Eu3+-doped SiO2 nanorods were synthesized through a simple sol–gel method using cetyltrimethylammonium bromide (CTAB) as surfactant template and tetraethylorthosilicate as silicon source. X-ray diffraction, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectrum, scanning electron microscope (SEM), transmission electron microscopy, and photoluminescence spectra were employed to characterize the products in detail. The nanorods have good uniformity and their diameters and lengths are in the range of 200–300 and 500–700 nm through the SEM images, respectively. The formation of the nanorods was studied by taking SEM images after different aging time. The experimental results indicate that CTAB plays a crucial role in the formation of the silica nanorods. The luminescence of Eu3+-doped SiO2 nanorods is dominated by red-emission around 612 nm due to intra-atomic 4f → 4f (5D0 → 7F2) transition of Eu3+ ions. Furthermore, the effect of doping concentrations of Eu3+ ions on the luminescence was investigated.  相似文献   

18.
木糖转化到糠醛一般包括两步: 首先在酶、碱或路易斯(L)酸的催化作用下异构化木糖到木酮糖, 接下来木酮糖在酸的作用下脱水得到糠醛. 针对木糖水相脱水一步制备糠醛, 利用十六烷基三甲基溴化铵(CTAB)为模板剂, 借助软模板合作策略制备了一种抗水的新型固体酸催化剂, 介孔磷酸铌, 并利用X射线衍射(XRD)、N2吸脱附、透射电镜(TEM)、氨气程序升温脱附(NH3-TPD)和吡啶吸附傅里叶变换红外(Py-FTIR)光谱对材料的结构和酸性质进行了表征. 研究发现介孔磷酸铌不仅具有很高的比表面积(>200 m2·g-1), 比较窄的孔径分布(3.5nm), 同时还具有很强的L酸性和布朗斯特(B)酸性. 通过L酸催化的木糖异构化为木酮糖/来苏糖和B酸催化的木酮糖/来苏糖进一步脱水得到糠醛, 实现了一步由木糖到糠醛的高效转化. 为了优化反应条件, 考察了水溶液中反应温度、投料质量比及反应时间对木糖转化率和糠醛收率的影响, 在最佳的反应条件下, 木糖的转化率为96.5%, 糠醛的收率达49.8%. 进一步地, 为了提高收率且易于分离, 利用4-甲基-2-戊酮(MIBK)/NaCl水溶液(体积比为7:3)作为反应混合溶剂, 使糠醛收率提高到68.4%.  相似文献   

19.
袁伟  刘昉  张昭 《无机化学学报》2013,29(4):803-809
用六水合硝酸镍为镍源,尿素为沉淀剂,以少量的复合表面活性剂(SDS/P123,CTAB/P123,CTBA/SDS)为模板水热制备了介孔氧化镍。分别采用热重-差示扫描量热(TG-DSC)、傅立叶红外光谱(FTIR)、X射线衍射(XRD)、氮气吸附脱附、扫描电子显微镜(SEM)、透射电子显微镜(TEM)对产物的结构和形貌进行了表征。用循环伏安法,恒电流充放电和交流阻抗谱等对材料进行了电化学性能的测试。结果表明,以复合表面活性剂SDS/P123为模板制备的介孔氧化镍有最大的比表面积、孔径和比电容,且当SDS/P123质量比为2:1时,所制备的氧化镍比表面积、孔径和比电容分别为209 m2.g-1,0.407 cm3.g-1,265 F.g-1。  相似文献   

20.
Octa(tetramethylammonium)-polyhedral oligomeric silsesquioxane(TMA-POSS) with cage-like structure was synthesized, the structure was characterized by NMR, FTIR and Elemental analyses. The mesoporous silica was prepared under alkaline condition using TMA-POSS as the silicon source and hexadecyltrimethylammonium bromide (CTAB) as the template, the structures of these products were characterized by XRD, TEM and nitrogen adsorption and desorption methods. The results indicate that the synthesized silica exhibites a well-ordered hexagonal pore structure with larger specific surface area. With increasing of CTAB molar ratio, the spacing of the crystal plane d100 is increased. The effects of the pH values on the mesoporous structure in the reaction system with different molar ratio of nPOSS / nCTAB were investigated. The synthesis mechanism of mesoporous silica was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号