首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Bayesian model selection procedure for comparing models subject to inequality and/or equality constraints is proposed. An encompassing prior approach is used, and a general form of the Bayes factor of a constrained model against the encompassing model is derived. A simple estimation method is proposed which can estimate the Bayes factors for all candidate models simultaneously by using one set of samples from the encompassing model. A simulation study and a real data analysis demonstrate performance of the method.  相似文献   

2.
We highlight a general hybrid system as the micromovement model for asset price using counting processes recently introduced with its Bayes estimation via filtering. We construct a new simple micromovement model and apply it to analyze trade-by-trade stock price data in the light of the series of works initiated by Christie and Schultz [Why do NASDAQ market makers avoid odd-eighth quotes?, Finance 49 (1994) 1813–1840]. Through the new model, we propose more reasonable, but computationally intensive measures for trading noise including clustering noise and non-clustering noise, and for trading cost. We employ Bayes estimation via filtering to obtain parameter estimates of the new model and to provide numerical measures of trading noise and trading cost for three stocks from four chosen periods. Our empirical results support the important findings in [Christie, Harris, Schultz, Why did NASDAQ market makers stop avoiding odd-eighth quotes?, Finance 49 (1994) 1841–1860; Barclay, Christie, Harris, Kandel, Schultz, The effects of market reform on the trading costs and depths of NASDAQ stocks, J. Finance 54(1) (1999) 1–34].  相似文献   

3.
针对具有Markov区制转移的、波动均值状态相依的随机波动模型,基于贝叶斯分析,我们推导并给出了对区制转移随机波动模型的MCMC估计方法,其中对参数估计采用Gibbs抽样方法,对潜在对数波动和区制的状态变量估计采用"向前滤波、向后抽样"的多步移动方法;利用该模型,对我国上证综指周收益率进行了实证分析,发现对沪市波动性有较好的描述,捕捉了波动的时变性、聚类性和非线性特征,同时刻画了沪市的高低波动状态转换过程。  相似文献   

4.
We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation–maximization (SAEM) algorithm to maximize the likelihood function with the novelty of using approximate Bayesian computation (ABC) within SAEM. The task is to provide each iteration of SAEM with a filtered state of the system, and this is achieved using an ABC sampler for the hidden state, based on sequential Monte Carlo methodology. It is shown that the resulting SAEM-ABC algorithm can be calibrated to return accurate inference, and in some situations it can outperform a version of SAEM incorporating the bootstrap filter. Two simulation studies are presented, first a nonlinear Gaussian state-space model then a state-space model having dynamics expressed by a stochastic differential equation. Comparisons with iterated filtering for maximum likelihood inference, and Gibbs sampling and particle marginal methods for Bayesian inference are presented.  相似文献   

5.
This paper studies the question of filtering and maximizing terminal wealth from expected utility in partial information stochastic volatility models. The special feature is that the only information available to the investor is the one generated by the asset prices, and the unobservable processes will be modeled by stochastic differential equations. Using the change of measure techniques, the partial observation context can be transformed into a full information context such that coefficients depend only on past history of observed prices (filter processes). Adapting the stochastic non-linear filtering, we show that under some assumptions on the model coefficients, the estimation of the filters depend on a priori models for the trend and the stochastic volatility. Moreover, these filters satisfy a stochastic partial differential equations named “Kushner–Stratonovich equations”. Using the martingale duality approach in this partially observed incomplete model, we can characterize the value function and the optimal portfolio. The main result here is that, for power and logarithmic utility, the dual value function associated to the martingale approach can be expressed, via the dynamic programming approach, in terms of the solution to a semilinear partial differential equation which depends on the filters estimate and the volatility. We illustrate our results with some examples of stochastic volatility models popular in the financial literature.  相似文献   

6.
This paper proposes a stochastic volatility model (PAR-SV) in which the log-volatility follows a first-order periodic autoregression. This model aims at representing time series with volatility displaying a stochastic periodic dynamic structure, and may then be seen as an alternative to the familiar periodic GARCH process. The probabilistic structure of the proposed PAR-SV model such as periodic stationarity and autocovariance structure are first studied. Then, parameter estimation is examined through the quasi-maximum likelihood (QML) method where the likelihood is evaluated using the prediction error decomposition approach and Kalman filtering. In addition, a Bayesian MCMC method is also considered, where the posteriors are given from conjugate priors using the Gibbs sampler in which the augmented volatilities are sampled from the Griddy Gibbs technique in a single-move way. As a-by-product, period selection for the PAR-SV is carried out using the (conditional) deviance information criterion (DIC). A simulation study is undertaken to assess the performances of the QML and Bayesian Griddy Gibbs estimates in finite samples while applications of Bayesian PAR-SV modeling to daily, quarterly and monthly S&P 500 returns are considered.  相似文献   

7.
A threshold stochastic volatility (SV) model is used for capturing time-varying volatilities and nonlinearity. Two adaptive Markov chain Monte Carlo (MCMC) methods of model selection are designed for the selection of threshold variables for this family of SV models. The first method is the direct estimation which approximates the model posterior probabilities of competing models. Using parallel MCMC sampling to estimate these probabilities, the best threshold variable is selected with the highest posterior model probability. The second method is to use the deviance information criterion to compare among these competing models and select the best one. Simulation results lead us to conclude that for large samples the posterior model probability approximation method can give an accurate approximation of the posterior probability in Bayesian model selection. The method delivers a powerful and sharp model selection tool. An empirical study of five Asian stock markets provides strong support for the threshold variable which is formulated as a weighted average of important variables.  相似文献   

8.
We propose sequential Monte Carlo-based algorithms for maximum likelihood estimation of the static parameters in hidden Markov models with an intractable likelihood using ideas from approximate Bayesian computation. The static parameter estimation algorithms are gradient-based and cover both offline and online estimation. We demonstrate their performance by estimating the parameters of three intractable models, namely the α-stable distribution, g-and-k distribution, and the stochastic volatility model with α-stable returns, using both real and synthetic data.  相似文献   

9.
为了能够同时刻画和描述金融资产收益序列的偏态、厚尾以及序列的门限效应、非对称杠杆效应等特性,提出把门限广义非对称随机波动模型与非参数Dirichlet过程混合模型有机结合,构建了半参数门限广义非对称随机波动模型,并对模型进行了贝叶斯分析.实证研究中,利用上海黄金价格收益率序列数据进行建模分析,结果表明:半参数门限广义非对称随机波动模型能够有效地刻画上海黄金价格收益率序列波动率的动态特征.  相似文献   

10.
Volatility plays an important role in portfolio management and option pricing. Recently, there has been a growing interest in modeling volatility of the observed process by nonlinear stochastic process [S.J. Taylor, Asset Price Dynamics, Volatility, and Prediction, Princeton University Press, 2005; H. Kawakatsu, Specification and estimation of discrete time quadratic stochastic volatility models, Journal of Empirical Finance 14 (2007) 424–442]. In [H. Gong, A. Thavaneswaran, J. Singh, Filtering for some time series models by using transformation, Math Scientist 33 (2008) 141–147], we have studied the recursive estimates for discrete time stochastic volatility models driven by normal errors. In this paper, we study the recursive estimates for various classes of continuous time nonlinear non-Gaussian stochastic volatility models used for option pricing in finance.  相似文献   

11.
A multimove sampling scheme for the state parameters of non-Gaussian and nonlinear dynamic models for univariate time series is proposed. This procedure follows the Bayesian framework, within a Gibbs sampling algorithm with steps of the Metropolis–Hastings algorithm. This sampling scheme combines the conjugate updating approach for generalized dynamic linear models, with the backward sampling of the state parameters used in normal dynamic linear models. A quite extensive Monte Carlo study is conducted in order to compare the results obtained using our proposed method, conjugate updating backward sampling (CUBS), with those obtained using some algorithms previously proposed in the Bayesian literature. We compare the performance of CUBS with other sampling schemes using two real datasets. Then we apply our algorithm in a stochastic volatility model. CUBS significantly reduces the computing time needed to attain convergence of the chains, and is relatively simple to implement.  相似文献   

12.
The calibration of some stochastic differential equation used to model spot prices in electricity markets is investigated. As an alternative to relying on standard likelihood maximization, the adoption of a fully Bayesian paradigm is explored, that relies on Markov chain Monte Carlo (MCMC) stochastic simulation and provides the posterior distributions of the model parameters. The proposed method is applied to one‐ and two‐factor stochastic models, using both simulated and real data. The results demonstrate good agreement between the maximum likelihood and MCMC point estimates. The latter approach, however, provides a more complete characterization of the model uncertainty, an information that can be exploited to obtain a more realistic assessment of the forecasting error. In order to further validate the MCMC approach, the posterior distribution of the Italian electricity price volatility is explored for different maturities and compared with the corresponding maximum likelihood estimates.  相似文献   

13.
The use of nonlinear state space models in the study and control of stochastic dynamic systems is regularly growing. With the new generation of particle filters, efficient filtering methods are now available for the identification of these models. However their statistical selection is still an open problem because of the frequent nonaccessibility of the related likelihoods and the intricate estimation of the latter. This rules out all the usual model comparison information criteria as Akaïke's and unfavour also the efficient methods relying on Bayes factor estimation by MCMC simulations.This Note shows how a convergent nonparametric Bayes factor estimator can be built and used advantageously, as direct application of these new particle filters themselves. To cite this article: J.-P. Vila, I. Saley, C. R. Acad. Sci. Paris, Ser. I 347 (2009).  相似文献   

14.
Many numerical aspects are involved in parameter estimation of stochastic volatility models. We investigate a model for stochastic volatility suggested by Hobson and Rogers [Complete models with stochastic volatility, Mathematical Finance 8 (1998) 27] and we focus on its calibration performance with respect to numerical methodology.In recent financial literature there are many papers dealing with stochastic volatility models and their capability in capturing European option prices; in Figà-Talamanca and Guerra [Towards a coherent volatility pricing model: An empirical comparison, Financial Modelling, Phisyca-Verlag, 2000] a comparison between some of the most significant models is done. The model proposed by Hobson and Rogers seems to describe quite well the dynamics of volatility.In Figà-Talamanca and Guerra [Fitting the smile by a complete model, submitted] a deep investigation of the Hobson and Rogers model was put forward, introducing different ways of parameters' estimation. In this paper we test the robustness of the numerical procedures involved in calibration: the quadrature formula to compute the integral in the definition of some state variables, called offsets, that represent the weight of the historical log-returns, the discretization schemes adopted to solve the stochastic differential equation for volatility and the number of simulations in the Monte Carlo procedure introduced to obtain the option price.The main results can be summarized as follows. The choice of a high order of convergence scheme is not fully justified because the option prices computed via calibration method are not sensitive to the use of a scheme with 2.0 order of convergence or greater. The refining of the approximation rule for the integral, on the contrary, allows to compute option prices that are often closer to market prices. In conclusion, a number of 10 000 simulations seems to be sufficient to compute the option price and a higher number can only slow down the numerical procedure.  相似文献   

15.
Non-linear structural equation models are widely used to analyze the relationships among outcomes and latent variables in modern educational, medical, social and psychological studies. However, the existing theories and methods for analyzing non-linear structural equation models focus on the assumptions of outcomes from an exponential family, and hence can’t be used to analyze non-exponential family outcomes. In this paper, a Bayesian method is developed to analyze non-linear structural equation models in which the manifest variables are from a reproductive dispersion model (RDM) and/or may be missing with non-ignorable missingness mechanism. The non-ignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm combining the Gibbs sampler and the Metropolis–Hastings algorithm is used to obtain the joint Bayesian estimates of structural parameters, latent variables and parameters in the logistic regression model, and a procedure calculating the Bayes factor for model comparison is given via path sampling. A goodness-of-fit statistic is proposed to assess the plausibility of the posited model. A simulation study and a real example are presented to illustrate the newly developed Bayesian methodologies.  相似文献   

16.
We construct a general multi-factor model for estimation and calibration of commodity spot prices and futures valuation. This extends the multi-factor long-short model in Schwartz and Smith (Manag Sci 893–911, 2000) and Yan (Review of Derivatives Research 5(3):251–271, 2002) in two important aspects: firstly we allow for both the long and short term dynamic factors to be mean reverting incorporating stochastic volatility factors and secondly we develop an additive structural seasonality model. In developing this non-linear continuous time stochastic model we maintain desirable model properties such as being arbitrage free and exponentially affine, thereby allowing us to derive closed form futures prices. In addition the models provide an improved capability to capture dynamics of the futures curve calibration in different commodities market conditions such as backwardation and contango. A Milstein scheme is used to provide an accurate discretized representation of the s.d.e. model. This results in a challenging non-linear non-Gaussian state-space model. To carry out inference, we develop an adaptive particle Markov chain Monte Carlo method. This methodology allows us to jointly calibrate and filter the latent processes for the long-short and volatility dynamics. This methodology is general and can be applied to the estimation and calibration of many of the other multi-factor stochastic commodity models proposed in the literature. We demonstrate the performance of our model and algorithm on both synthetic data and real data for futures contracts on crude oil.  相似文献   

17.
The paper deals with recursive state estimation for hybrid systems. An unobservable state of such systems is changed both in a continuous and a discrete way. Fast and efficient online estimation of hybrid system state is desired in many application areas. The presented paper proposes to look at this problem via Bayesian filtering in the factorized (decomposed) form. General recursive solution is proposed as the probability density function, updated entry-wise. The paper summarizes general factorized filter specialized for (i) normal state-space models; (ii) multinomial state-space models with discrete observations; and (iii) hybrid systems. Illustrative experiments and comparison with one of the counterparts are provided.  相似文献   

18.
In this work, we investigate sequential Bayesian estimation for inference of stochastic volatility with variance‐gamma (SVVG) jumps in returns. We develop an estimation algorithm that combines the sequential learning auxiliary particle filter with the particle learning filter. Simulation evidence and empirical estimation results indicate that this approach is able to filter latent variances, identify latent jumps in returns, and provide sequential learning about the static parameters of SVVG. We demonstrate comparative performance of the sequential algorithm and off‐line Markov Chain Monte Carlo in synthetic and real data applications.  相似文献   

19.
This paper derives a particle filter algorithm within the Dempster–Shafer framework. Particle filtering is a well-established Bayesian Monte Carlo technique for estimating the current state of a hidden Markov process using a fixed number of samples. When dealing with incomplete information or qualitative assessments of uncertainty, however, Dempster–Shafer models with their explicit representation of ignorance often turn out to be more appropriate than Bayesian models.The contribution of this paper is twofold. First, the Dempster–Shafer formalism is applied to the problem of maintaining a belief distribution over the state space of a hidden Markov process by deriving the corresponding recursive update equations, which turn out to be a strict generalization of Bayesian filtering. Second, it is shown how the solution of these equations can be efficiently approximated via particle filtering based on importance sampling, which makes the Dempster–Shafer approach tractable even for large state spaces. The performance of the resulting algorithm is compared to exact evidential as well as Bayesian inference.  相似文献   

20.
A new technique for the latent state estimation of a wide class of nonlinear time series models is proposed. In particular, we develop a partially linearized sigma point filter in which random samples of possible state values are generated at the prediction step using an exact moment-matching algorithm and then a linear programming based procedure is used in the update step of the state estimation. The effectiveness of the new filtering procedure is assessed via a simulation example that deals with a highly nonlinear, multivariate time series representing an interest rate process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号