首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对股指波动所具有的动态结构信息特征,在状态空间建模理论的框架下,将服从Markov过程的潜在波动状态变量引入状态方程,同时在观测方程中考虑极值点的影响,构造出一类非高斯Markov随机波动状态空间模型。针对传统的MCMC方法对该类模型估计时效率低下的缺陷,设计了基于序贯Monte Carlo方法的贝叶斯滤波算法进行仿真分析,并且从算法效率和准确性方面对两种方法进行了比较。通过对沪深300股指波动的实证研究表明:对于一类非线性非高斯状态空间模型,贝叶斯滤波算法在保证估计精度的同时较MCMC方法更加有效率,能够有效刻画股指波动的动态结构特征。  相似文献   

2.
This paper presents an important development of a novel non-parametric object classification technique, namely CaRBS (Classification and Ranking Belief Simplex), to enable regression-type analyses. Termed RCaRBS, it is, as with CaRBS, an evidence-based technique, with its mathematical operations based on the Dempster–Shafer theory of evidence. Its exposition is demonstrated here by modelling the strategic fit of a set of public organizations. In addition to the consideration of the predictive fit of a series of models, graphical exploration of the contribution of individual variables in the derived models is also undertaken when using RCaRBS. Comparison analyses, including through fivefold cross-validation, are carried out using multiple regression and neural networks models. The findings highlight that RCaRBS achieves parity of test set predictive fit with regression and better fit than neural networks. The RCaRBS technique can also enable researchers to explore non-linear relationships (contributions) between variables in greater detail than either regression or neural networks models.  相似文献   

3.
We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation–maximization (SAEM) algorithm to maximize the likelihood function with the novelty of using approximate Bayesian computation (ABC) within SAEM. The task is to provide each iteration of SAEM with a filtered state of the system, and this is achieved using an ABC sampler for the hidden state, based on sequential Monte Carlo methodology. It is shown that the resulting SAEM-ABC algorithm can be calibrated to return accurate inference, and in some situations it can outperform a version of SAEM incorporating the bootstrap filter. Two simulation studies are presented, first a nonlinear Gaussian state-space model then a state-space model having dynamics expressed by a stochastic differential equation. Comparisons with iterated filtering for maximum likelihood inference, and Gibbs sampling and particle marginal methods for Bayesian inference are presented.  相似文献   

4.
Herein, we consider direct Markov chain approximations to the Duncan–Mortensen–Zakai equations for nonlinear filtering problems on regular, bounded domains. For clarity of presentation, we restrict our attention to reflecting diffusion signals with symmetrizable generators. Our Markov chains are constructed by employing a wide band observation noise approximation, dividing the signal state space into cells, and utilizing an empirical measure process estimation. The upshot of our approximation is an efficient, effective algorithm for implementing such filtering problems. We prove that our approximations converge to the desired conditional distribution of the signal given the observation. Moreover, we use simulations to compare computational efficiency of this new method to the previously developed branching particle filter and interacting particle filter methods. This Markov chain method is demonstrated to outperform the two-particle filter methods on our simulated test problem, which is motivated by the fish farming industry.  相似文献   

5.
In the following article, we investigate a particle filter for approximating Feynman–Kac models with indicator potentials and we use this algorithm within Markov chain Monte Carlo (MCMC) to learn static parameters of the model. Examples of such models include approximate Bayesian computation (ABC) posteriors associated with hidden Markov models (HMMs) or rare-event problems. Such models require the use of advanced particle filter or MCMC algorithms to perform estimation. One of the drawbacks of existing particle filters is that they may “collapse,” in that the algorithm may terminate early, due to the indicator potentials. In this article, using a newly developed special case of the locally adaptive particle filter, we use an algorithm that can deal with this latter problem, while introducing a random cost per-time step. In particular, we show how this algorithm can be used within MCMC, using particle MCMC. It is established that, when not taking into account computational time, when the new MCMC algorithm is applied to a simplified model it has a lower asymptotic variance in comparison to a standard particle MCMC algorithm. Numerical examples are presented for ABC approximations of HMMs.  相似文献   

6.
For hidden Markov models one of the most popular estimates of the hidden chain is the Viterbi path — the path maximizing the posterior probability. We consider a more general setting, called the pairwise Markov model, where the joint process consisting of finite-state hidden regime and observation process is assumed to be a Markov chain. We prove that under some conditions it is possible to extend the Viterbi path to infinity for almost every observation sequence which in turn enables to define an infinite Viterbi decoding of the observation process, called the Viterbi process. This is done by constructing a block of observations, called a barrier, which ensures that the Viterbi path goes through a given state whenever this block occurs in the observation sequence.  相似文献   

7.
This paper presents an analysis of asset allocation strategies when the asset returns are governed by a discrete-time higher-order hidden Markov model (HOHMM), also called the weak hidden Markov model. We assume the drifts and volatilities of the asset returns switch over time according to the state of the HOHMM, in which the probability of the current state depends on the information from previous time-steps. The “switching” and “mixed” strategies are studied. We use a multivariate filtering technique in conjunction with the EM algorithm to obtain estimates of model parameter at a given time. This, in turn, aids investors in determining the optimal investment strategy for the next time step. Numerical implementation is applied to data on Russell 3000 value and growth indices. We benchmark the respective performances of portfolio using three classical investment measures.  相似文献   

8.
In this paper, we consider an availability maximization problem for a partially observable system subject to random failure. System deterioration is described by a hidden, continuous-time homogeneous Markov process. While the system is operational, multivariate observations that are stochastically related to the system state are sampled through condition monitoring at discrete time points. The objective is to design an optimal multivariate Bayesian control chart that maximizes the long-run expected average availability per unit time. We have developed an efficient computational algorithm in the semi-Markov decision process (SMDP) framework and showed that the availability maximization problem is equivalent to solving a parameterized system of linear equations. A numerical example is presented to illustrate the effectiveness of our approach, and a comparison with the traditional age-based replacement policy is also provided.  相似文献   

9.
The Hidden Markov Chains (HMC) are widely applied in various problems. This succes is mainly due to the fact that the hidden process can be recovered even in the case of very large set of data. These models have been recetly generalized to ‘Pairwise Markov Chains’ (PMC) model, which admit the same processing power and a better modeling one. The aim of this note is to propose further generalization called Triplet Markov Chains (TMC), in which the distribution of the couple (hidden process, observed process) is the marginal distribution of a Markov chain. Similarly to HMC, we show that posterior marginals are still calculable in Triplets Markov Chains. We provide a necessary and sufficient condition that a TMC is a PMC, which shows that the new model is strictly more general. Furthermore, a link with the Dempster–Shafer fusion is specified. To cite this article: W. Pieczynski, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 275–278.  相似文献   

10.
We consider the problem of detecting change points (structural changes) in long sequences of data, whether in a sequential fashion or not, and without assuming prior knowledge of the number of these change points. We reformulate this problem as the Bayesian filtering and smoothing of a non standard state space model. Towards this goal, we build a hybrid algorithm that relies on particle filtering and Markov chain Monte Carlo ideas. The approach is illustrated by a GARCH change point model.  相似文献   

11.
Soft set theory, initiated by Molodtsov, is a general mathematical tool for dealing with uncertain problems. In this paper, we first point out that the similarity measure in a previous paper by Majumdar and Samanta [P. Majumdar, S.K. Samanta, Generalized fuzzy soft sets, Comput. Math. Appl. 59 (2010) 1425–1432] is limited by two counterexamples. To deal with the problems of subjective evaluation and uncertain knowledge, this paper proposes the concept of D–S generalized fuzzy soft sets by combining Dempster–Shafer theory of evidence and generalized fuzzy soft sets. We study some of its operations and basic properties, and the relationship between generalized fuzzy soft sets and D–S generalized fuzzy soft sets are introduced. Then we propose the concept of the similarity between two D–S generalized fuzzy soft sets. At last, we present a new method of evaluation based on D–S generalized fuzzy soft sets and apply it into a medical diagnosis problem.  相似文献   

12.
Parameter estimation based on uncertain data represented as belief structures is one of the latest problems in the Dempster–Shafer theory. In this paper, a novel method is proposed for the parameter estimation in the case where belief structures are uncertain and represented as interval-valued belief structures. Within our proposed method, the maximization of likelihood criterion and minimization of estimated parameter’s uncertainty are taken into consideration simultaneously. As an illustration, the proposed method is employed to estimate parameters for deterministic and uncertain belief structures, which demonstrates its effectiveness and versatility.  相似文献   

13.
In this article, we study a stochastic volatility model for a class of risky assets. We assume that the volatilities of the assets are driven by a common state of economy, which is unobservable and represented by a hidden Markov chain. Under this hidden Markov model (HMM), we develop recursively computable filtering equations for certain functionals of the chain. Expectation maximization (EM) parameter estimation is then used. Applications to an optimal asset allocation problem with mean-variance utility are given.  相似文献   

14.
The method introduced by Leroux [Maximum likelihood estimation for hidden Markov models, Stochastic Process Appl. 40 (1992) 127–143] to study the exact likelihood of hidden Markov models is extended to the case where the state variable evolves in an open interval of the real line. Under rather minimal assumptions, we obtain the convergence of the normalized log-likelihood function to a limit that we identify at the true value of the parameter. The method is illustrated in full details on the Kalman filter model.  相似文献   

15.
In a very recent note by Gao and Ni [B. Gao, M.F. Ni, A note on article “The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees”, European Journal of Operational Research, in press, doi:10.1016/j.ejor.2007.10.0381], they argued that Yen’s combination rule [J. Yen, Generalizing the Dempster–Shafer theory to fuzzy sets, IEEE Transactions on Systems, Man and Cybernetics 20 (1990) 559–570], which normalizes the combination of multiple pieces of evidence at the end of the combination process, was incorrect. If this were the case, the nonlinear programming models we proposed in [Y.M. Wang, J.B. Yang, D.L. Xu, K.S. Chin, The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees, European Journal of Operational Research 175 (2006) 35–66] would also be incorrect. In this reply to Gao and Ni, we re-examine their numerical illustrations and reconsider their analysis of Yen’s combination rule. We conclude that Yen’s combination rule is correct and our nonlinear programming models are valid.  相似文献   

16.
Abstract

We formulate and analyse an inverse problem using derivative prices to obtain an implied filtering density on volatility’s hidden state. Stochastic volatility is the unobserved state in a hidden Markov model (HMM) and can be tracked using Bayesian filtering. However, derivative data can be considered as conditional expectations that are already observed in the market, and which can be used as input to an inverse problem whose solution is an implied conditional density on volatility. Our analysis relies on a specification of the martingale change of measure, which we refer to as separability. This specification has a multiplicative component that behaves like a risk premium on volatility uncertainty in the market. When applied to SPX options data, the estimated model and implied densities produce variance-swap rates that are consistent with the VIX volatility index. The implied densities are relatively stable over time and pick up some of the monthly effects that occur due to the options’ expiration, indicating that the volatility-uncertainty premium could experience cyclic effects due to the maturity date of the options.  相似文献   

17.
This paper presents an integrated platform for multi-sensor equipment diagnosis and prognosis. This integrated framework is based on hidden semi-Markov model (HSMM). Unlike a state in a standard hidden Markov model (HMM), a state in an HSMM generates a segment of observations, as opposed to a single observation in the HMM. Therefore, HSMM structure has a temporal component compared to HMM. In this framework, states of HSMMs are used to represent the health status of a component. The duration of a health state is modeled by an explicit Gaussian probability function. The model parameters (i.e., initial state distribution, state transition probability matrix, observation probability matrix, and health-state duration probability distribution) are estimated through a modified forward–backward training algorithm. The re-estimation formulae for model parameters are derived. The trained HSMMs can be used to diagnose the health status of a component. Through parameter estimation of the health-state duration probability distribution and the proposed backward recursive equations, one can predict the useful remaining life of the component. To determine the “value” of each sensor information, discriminant function analysis is employed to adjust the weight or importance assigned to a sensor. Therefore, sensor fusion becomes possible in this HSMM based framework.  相似文献   

18.
Hidden Markov fields (HMFs) have been successfully used in many areas to take spatial information into account. In such models, the hidden process of interest X is a Markov field, that is to be estimated from an observable process Y. The possibility of such estimation is due to the fact that the conditional distribution of the hidden process with respect to the observed one remains Markovian. The latter property remains valid when the pairwise process (X,Y) is Markov and such models, called pairwise Markov fields (PMFs), have been shown to offer larger modeling capabilities while exhibiting similar processing cost. Further extensions lead to a family of more general models called triplet Markov fields (TMFs) in which the triplet (U,X,Y) is Markov where U is an underlying process that may have different meanings according to the application. A link has also been established between these models and the theory of evidence, opening new possibilities of achieving Dempster–Shafer fusion in Markov fields context. The aim of this paper is to propose a unifying general formalism allowing all conventional modeling and processing possibilities regarding information imprecision, sensor unreliability and data fusion in Markov fields context. The generality of the proposed formalism is shown theoretically through some illustrative examples dealing with image segmentation, and experimentally on hand-drawn and SAR images.  相似文献   

19.
Tracking the output of an unknown Markov process with unknown generator and unknown output function is considered. It is assumed the unknown quantities have a known prior probability distribution. It is shown that the optimal control is a linear feedback in the tracking error plus the conditional expectation of a quantity involving the unknown generator and output function of the Markov process. The results also have application to Bayesian identification of hidden Markov models  相似文献   

20.
The hidden Markov chains (HMC) (X,Y) have been recently generalized to triplet Markov chains (TMC), which enjoy the same capabilities of restoring a hidden process X from the observed process Y. The posterior distribution of X can be viewed, in an HMC, as a particular case of the so called “Dempster–Shafer fusion” (DS fusion) of the prior Markov with a probability q defined from the observation Y=y. As such, when we place ourselves in the Dempster–Shafer theory of evidence by replacing the probability distribution of X by a mass function M having an analogous Markov form (which gives again the classical Markov probability distribution in a particular case), the result of DS fusion of M with q generalizes the conventional posterior distribution of X. Although this result is not necessarily a Markov distribution, it has been recently shown that it is a TMC, which renders traditional restoration methods applicable. The aim of this Note is to present some generalizations of the latter result: (i) more general HMCs can be considered; (ii) q, which can possibly be a mass function Q, is itself a result of the DS fusion; and (iii) all these results are finally specified in the hidden Markov trees (HMT) context, which generalizes the HMC one. To cite this article: W. Pieczynski, C. R. Acad. Sci. Paris, Ser. I 336 (2003).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号