首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models
Authors:Umberto Picchini  Adeline Samson
Institution:1.Centre for Mathematical Sciences,Lund University,Lund,Sweden;2.Universite Grenoble Alpes, LJK,Grenoble,France;3.CNRS, LJK,Grenoble,France
Abstract:We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation–maximization (SAEM) algorithm to maximize the likelihood function with the novelty of using approximate Bayesian computation (ABC) within SAEM. The task is to provide each iteration of SAEM with a filtered state of the system, and this is achieved using an ABC sampler for the hidden state, based on sequential Monte Carlo methodology. It is shown that the resulting SAEM-ABC algorithm can be calibrated to return accurate inference, and in some situations it can outperform a version of SAEM incorporating the bootstrap filter. Two simulation studies are presented, first a nonlinear Gaussian state-space model then a state-space model having dynamics expressed by a stochastic differential equation. Comparisons with iterated filtering for maximum likelihood inference, and Gibbs sampling and particle marginal methods for Bayesian inference are presented.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号