首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Fluorescent conjugated polymers are an attractive basis for the design of low detection limit sensing devices owing to their intrinsic signal amplification capability. A simple and universal method to rationally control or fine-tune the chemodetection selectivity of conjugated polymer materials toward a desired analytical target would further benefit their applications. In a quest of such a method we investigated a general approach to cross-linked molecularly imprinted fluorescent conjugated polymer (MICP) materials that possess an intrinsic capability for signal transduction and have potential to enhance selectivity and sensitivity of sensor devices based on conjugated polymers. To study these capabilities, we prepared an MICP material for the detection of 2,4,6-trinitrotoluene and related nitroaromatic compounds. We found the imprinting effect in this material to be based on analyte shape/size recognition being substantial and generally overcoming other competing thermodynamically determined trends. The described molecularly imprinted fluorescent conjugated polymers show remarkable air stability and photostability, high fluorescence quantum yield, and reversible analyte binding and therefore are advantageous for sensing applications due to the ability to "preprogram" their detection selectivity through a choice of an imprinted template.  相似文献   

2.
Chang L  Li Y  Chu J  Qi J  Li X 《Analytica chimica acta》2010,680(1-2):65-71
In this paper, we demonstrated an efficient and robust route to the preparation of well-defined molecularly imprinted polymer based on reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. The alkyne terminated RAFT chain transfer agent was first synthesized, and then click reaction was used to graft RAFT agent onto the surface of silica particles which was modified by azide. Finally, imprinted thin film was prepared in the presence of 2,4-dichlorophenol as the template. The imprinted beads were demonstrated with a homogeneous polymer films (thickness of about 2.27 nm), and exhibited thermal stability under 255°C. The as-synthesized product showed obvious molecular imprinting effects towards the template, fast template rebinding kinetics and an appreciable selectivity over structurally related compounds.  相似文献   

3.
Liu R  Guan G  Wang S  Zhang Z 《The Analyst》2011,136(1):184-190
To convert the binding events on molecularly imprinted polymers (MIPs) into physically detectable signals and to extract the templates completely are the great challenges in developing MIP-based sensors. In this paper, a core-shell nanostructure was employed in constructing the MIP chemosensor for the improvements of template extraction efficiency and imprinted sites accessibility. Vinyl-substituted zinc(II) protoporphyrin (ZnPP) was used as both fluorescent reporter and functional monomer to synthesize atrazine-imprinted polymer shell at silica nanoparticle cores. The template atrazine coordinates with the Lewis acid binding site Zn of ZnPP to form a complex for the molecular imprinting polymerization. These imprinted sites are located in polymer matrix of the thin shells (~8 nm), possessing better accessibility and lower mass-transfer resistance for the target molecules. The fluorescence properties of ZnPP around the imprinted sites will vary upon rebinding of atrazine to these imprinted sites, realizing the conversion of rebinding events into detectable signals by monitoring fluorescence spectra. This MIP probe showed a limit of detection (LOD) of about 1.8 μM for atrazine detection. The core-shell nanostructured MIP method not only improves the sensitivity, but also shows high selectivity for atrazine detection when compared with the non-molecular imprinted counterparts.  相似文献   

4.
Surface molecular imprinting over functionalized nanoparticles has proved to be an effective approach for construction of artificial nanomaterials for protein recognition. Herein, we report a strategy for synthesis of core–shell protein‐imprinted nanoparticles by the functionalization of nano‐cores with ionic liquids followed by aqueous precipitation polymerization to build thermo‐responsive imprinted polymer nano‐shells. The immobilized ionic liquids can form multiple interactions with the protein template. The polymerization process can produce thermo‐reversible physical crosslinks, which are advantageous to enhancing imprinting and facilitating template removal. With bovine hemoglobin as a model template, the imprinted nanoparticles showed temperature‐sensitivity in both dispersion behaviors and rebinding capacities. Compared with the ionic‐liquid‐modified core nanoparticles, the imprinted particles exhibited greatly increased selectivity and two orders of magnitude higher binding affinity for the template protein. The imprinted nanoparticles achieved relatively high imprinting factor up to 5.0 and specific rebinding capacity of 67.7 mg/g, respectively. These nanoparticles also demonstrated rapid rebinding kinetics and good reproducibility after five cycles of adsorption–regeneration. Therefore, the presented approach may be viable for the fabrication of high‐performance protein‐imprinted nanoparticles with temperature sensitivity.  相似文献   

5.
The use of molecularly imprinted polymers (MIPs) prepared by ring-opening metathesis polymerization (ROMP) for bisphenol A (BPA) was reported in this article. The resulting MIPs have high imprinting and adsorption capacities, and can be used for separation and determination of BPA in environmental water samples. The successful application of ROMP in the molecular imprinting field is described here. For the first time, two cross-linkers (dicyclopentadiene and 2,5-norbornadiene) and two Grubbs catalysts (first and second generation) were investigated to compare their effects on the binding performance of MIPs. The ROMP technique is able to create the imprinted polymers within 1 h under mild conditions. Furthermore, it can provide MIPs with obvious imprinting effects towards the template, very fast template rebinding kinetics, high binding capacity and appreciable selectivity over structurally related compounds. The adsorption process for MIPs in this study can be completed within 45 min, which is much faster than that of bulk MIPs synthesized by traditional free-radical polymerization. The resulting imprinting polymer was evaluated for its use as a sorbent support in an off-line solid-phase extraction approach to recover BPA from diluted aqueous samples. The optimized extraction protocol resulted in a reliable MISPE method suitable for selective extraction and preconcentration of BPA from tap water, human urine and liquid milk samples. This article demonstrates the practical feasibility of the MIPs prepared via ROMP as solid-phase extraction materials.  相似文献   

6.
Monodisperse, molecularly imprinted nanospheres were synthesized by nonaqueous (mini)emulsion polymerization using a standard monomer mixture of methacrylic acid and ethylene dimethacrylate containing the drug propranolol as a template. The preparation conditions (solvent, amount of surfactant, and amount of employed template) were extensively varied in order to assess their effect on the properties of the resulting polymer nanoparticles. The molecular recognition capability of the nanospheres was evaluated in batch rebinding experiments, and the effect of the nanosphere preparation conditions as well as of the reaction conditions was investigated. In this way, optimal preparation protocols for molecularly imprinted nanoparticles under nonaqueous conditions with the use of a nonionic emulsifier were identified, which lead to nanospheres with a diameter of around 100 nm having an enhanced capacity of specific template rebinding compared to both nonimprinted nanospheres and to particles obtained by emulsion polymerization in water. Best results were obtained with nanospheres prepared in N,N‐dimethylformamide/n‐hexane with a high functional monomer to template ratio. The enantioselectivity of the rebinding process was also demonstrated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
A water‐compatible molecularly imprinted polymer was prepared by Pickering emulsion polymerization using halloysite nanotubes as stabilized solid particles. During polymerization, we used 4‐vinylpyridine as monomer, divinylbenzene as cross‐linking agent, toluene as porogen, 2,2‐azobisisobutyronitrile as initiator, 2,4‐dichlorophenoxyacetic acid as template to form the oil phase, and Triton X‐100 aqueous solution to form the water phase. The halloysite nanotubes molecularly imprinted polymer was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Kinetic and equilibrium bindings were also employed to evaluate the adsorption properties of the imprinted polymer. The imprinted polymer showed better selectivity, more rapid kinetic binding (60 min) for 2,4‐dichlorophenoxyacetic acid in pure water compared with rebinding in toluene. The imprinted polymer was used as a sorbent to enrich and separate 2,4‐dichlorophenoxyacetic acid from water, and was detected by high‐performance liquid chromatography with UV detection.  相似文献   

8.
The successful molecular imprinting of 2-aminopyridine (2-apy) in bulk polymerisations of acrylic and sol-gel based polymers has been achieved. Both polymeric systems reveal varying degrees of affinity in rebinding the original template as well as a number of structural analogues. Rebinding was conducted in chloroform, acetonitrile and methanol in order to assess the role of hydrogen bonding in imprinting. The acrylic imprinted polymer retained approximately 50% of the template in rebinding studies in chloroform compared to 100% for the sol-gel. However, this higher affinity for the sol-gel was accompanied by a higher degree of non-specific binding. While the acrylic polymer performed poorly in acetonitrile, the sol-gel maintained a high degree of discrimination.The acrylic polymer exhibited little discrimination between imprinted and reference polymers for 3-aminopyridine (3-apy) indicating the high selectivity of the MIP polymer for 2-apy relative to 3-apy. This selectivity was reduced in acetonitrile. Selectivity of the sol-gel for 2-apy in chloroform was poor as 3-apy was retained to a similar degree. Comparable results were obtained in acetonitrile. 4-Aminopyridine (4-apy) bound strongly to all polymers in all solvents and proved very difficult to remove due to the high degree of non-specific binding for both polymeric matrices.  相似文献   

9.
Polymer capable of specific binding to Cu-dipyridyl complex was prepared by molecular imprinting technology. The binding specificity of the polymer to the template (Cu-dipyridyl complex) was in vestigated by cyclic voltametric scanning using the carbon paste electrode modified by polymer particles in phosphate buffer solution. Factors that influence rebinding of the imprinted polymer were explored. The result demonstrated that the cycllic voltammetry was an efficient approach to explore interactions between template and imprinted polymers.  相似文献   

10.
Coumarin, 7-hydroxycoumarin and dicoumarol molecularly imprinted polymers (MIP) were synthesized by bulk polymerization. Methacrylic acid and 4-vinylpyridine were tested as functional monomers and methanol, ethanol, acetonitrile, toluene and chloroform were tested as porogens. The binding capabilities of the imprinted polymers were assessed by equilibrium binding analysis. Highest binding capacity was obtained for MIP prepared for the template 7-hydroxycoumarin synthesized in methacrylic acid as functional monomer, chloroform as porogen and methanol/water as analyte solvent. Scanning electron microscopy analysis documented its appropriate morphology. ATR-FTIR spectra confirmed successful polymerization of MIP. Coumarin structural analogues were employed to evaluate the polymer selectivity and it was found that polymer prepared for 7-hydroxycoumarin was selective for its template molecule. Kinetic studies showed relatively fast adsorption of analytes to MIPs (1 h). Rebinding properties of MIPs were evaluated by adsorption isotherms. The calculated data fitted well with experimental data showing that Freundlich isotherm is suitable for modelling the adsorption of tested coumarins on prepared MIPs. Applicability of polymer prepared for 7-hydroxycoumarin was tested for the selective extraction of coumarins from the sample of chicory.  相似文献   

11.
A silica‐based surface magnetic molecularly imprinted polymer for the selective recognition of parabens was prepared using a facile and general method that combined atom‐transfer radical polymerization with surface imprinting technique. The prepared magnetic molecularly imprinted polymer was characterized by transmission electron microscopy, Fourier transform infrared spectrometry and physical property measurement. The isothermal adsorption experiment and kinetics adsorption experiment investigated the adsorption property of magnetic molecularly imprinted polymer to template molecule. The four parabens including methylparaben, ethylparaben, propylparaben, and butylparaben were used to assess the rebinding selectivity. An extraction method, which used magnetic molecularly imprinted polymer as adsorbents coupled with high‐performance liquid chromatography for the determination of the four parabens in fruit juice samples was developed. Under the optimal conditions, the limits of detections of the four parabens were 0.028, 0.026, 0.021, and 0.026 mg/L, respectively. The precision expressed as relative standard deviation ranging from 2.6 to 8.9% was obtained. In all three fortified levels, recoveries of parabens were in the range of 72.5–89.4%. The proposed method has been applied to different fruit juice samples including orange juice, grape juice, apple juice and peach juice, and satisfactory results were obtained.  相似文献   

12.
One of the major difficulties faced in the molecular imprinting of proteins is the inherently fragile and flexible nature of the protein template which makes it incompatible with most polymerization systems. Miniemulsion polymerization is a possible approach for preparing molecularly imprinted nanoparticles, and in this study, the method of initiation, the high-shear homogenization, and the surfactant used for the polymerization reaction had been considered as possible factors that can denature the template protein, ribonuclease A (RNase A). The conformation of the protein in a miniemulsion was studied using circular dichroism (CD). It was found that redox initiation was more suitable for protein imprinting and that the addition of poly(vinyl alcohol) (PVA) as a co-surfactant had proved to be effective in preserving the template protein structural integrity. On the basis of the results of the study, polymeric nanoparticles imprinted with RNase A were prepared via miniemulsion polymerization using methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) as the functional and cross-linker monomers, respectively, with the conditions of the polymerization system optimized to best preserve the integrity of the protein template. In the subsequent investigation for the recognition properties of the prepared nanoparticles through batch and competitive rebinding tests, the imprinted nanoparticles prepared through the conventional (nonoptimized) miniemulsion polymerization lacked the target specificity as displayed by those prepared under the optimized conditions. This illustrated the importance of protein structural integrity in protein imprinting.  相似文献   

13.
The uniform-sized spherical molecularly imprinted polymers were successfully prepared through molecular imprinting technology by two-step seed swelling and mini-emulsion polymerization in the aqueous condition using quinine as template molecules and methacrylic acid (MAA) as functional monomer. The polymers were characterized by IR spectra, thermal-weight analysis, scanning electron microscope and laser particle size analysis. The properties of imprinted polymers were investigated in different organic phases and aqueous media. In the organic media, results suggested that polar interactions (hydrogen bonding, ionic interactions) between acidic monomer/polymer and template molecules are mainly responsible for the binding and recognition; whereas in the aqueous medium, a considerable recognition effect was also obtained where the ionic (electrostatic) interaction and hydrophobic interaction play an important role. The experiments of binding different substrates indicated that the MIPs possessed an excellent rebinding ability and inherent selectivity to quinine. __________ Translated from Zhongshan Dcocue Xuebao/Acta Scientianum Natralium University Sunyatseni, 2005, 44(3)(in Chinese)  相似文献   

14.
A new 2D molecular imprinting technique based on nanotemplating and soft-lithography techniques is reported. This technique allows the creation of target-specific synthetic recognition sites on different substrates using a uniquely oriented and immobilized template and the attachment of a molecularly imprinted polymer on a substrate. The molecularly imprinted polymer was characterized by AFM, fluorescence microscopy, and ATR-FTIR. We evaluated the rebinding ability of the sites with theophylline (the target molecule). The selectivity of the molecularly imprinted polymer was determined for the theophylline-caffeine couple. The molecularly imprinted polymer exhibited selectivity for theophylline, as revealed by competitive rebinding experiments. Fluorescence microscopy experiments provided complementary proof of the selectivity of the molecularly imprinted polymer surfaces toward theophylline. These selective molecularly imprinted polymers have the potential for chemical sensor applications. Because of its 2D nature, this novel chemical sensor technology can be integrated with many existing high-sensitivity multichannel detection technologies.  相似文献   

15.
This article describes for the first time the development of a new polymerization technique by introducing iniferter‐induced “living” radical polymerization mechanism into precipitation polymerization and its application in the molecular imprinting field. The resulting iniferter‐induced “living” radical precipitation polymerization (ILRPP) has proven to be an effective approach for generating not only narrow disperse poly(ethylene glycol dimethacrylate) microspheres but also molecularly imprinted polymer (MIP) microspheres with obvious molecular imprinting effects towards the template (a herbicide 2,4‐dichlorophenoxyacetic acid (2,4‐D)), rather fast template rebinding kinetics, and appreciable selectivity over structurally related compounds. The binding association constant Ka and apparent maximum number Nmax for the high‐affinity sites of the 2,4‐D imprinted polymer were determined by Scatchard analysis and found to be 1.18 × 104 M?1 and 4.37 μmol/g, respectively. In addition, the general applicability of ILRPP in molecular imprinting was also confirmed by the successful preparation of MIP microspheres with another template (2‐chloromandelic acid). In particular, the living nature of ILRPP makes it highly useful for the facile one‐pot synthesis of functional polymer/MIP microspheres with surface‐bound iniferter groups, which allows their direct controlled surface modification via surface‐initiated iniferter polymerization and is thus of great potential in preparing advanced polymer/MIP materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3217–3228, 2010  相似文献   

16.
A dual responsive molecularly imprinted polymer sensitive to both photonic and magnetic stimuli was successfully prepared for the detection of four sulfonamides in aqueous media. The photoresponsive magnetic molecularly imprinted polymer was prepared by surface imprinting polymerization using superparamagnetic Fe3O4 nanoparticles functionalized with a silica layer as a support, water‐soluble 4‐[(4‐methacryloyloxy)phenylazo]benzenesulfonic acid as the functional monomer, and sulfadiazine as the template. The magnetic molecularly imprinted polymers showed specific affinity to sulfadiazine and its structural analogs in aqueous media. Upon alternate irradiation at 365 and 440 nm, the quantitative bind and release of the four sulfonamides by magnetic molecularly imprinted polymers occurred. Furthermore, the prepared magnetic molecularly imprinted polymers were used as solid‐phase extraction material selectively extracted the four sulfonamides from water samples with good recoveries. Thus, a simple, convenient, and reliable detection method for sulfonamides in the environment based on responsive magnetic molecularly imprinted polymers was successfully established.  相似文献   

17.
Functional polystyrene (PS) crosslinked microbeads were developed by dispersion polymerization as fluorescent molecularly imprinted polymers (MIPs) having cavities with specific recognition sites. The functional azobenzene molecule modified with pyridine was self‐assembled with Pyrenebutyric acid (template molecules), and introduced during the second stage of dispersion polymerization of polystyrene. The template molecule was removed from MIP by Soxhlet using acetonitrile as solvent. Non imprinted polymer (NIP) having no template was also synthesized for comparative study. Fluorescence spectroscopy could be used as a tool to derive insight into the location of the template molecules on the MIP or NIP. The template molecules were adsorbed on the surface of the NIPs during binding studies, which was evidenced from the pyrene excimeric emission observed at 440 nm. The template binding efficiency of the NIPs were much lower compared to MIPs. Pyrene emission from MIP upon rebinding showed typical monomeric emission in the 375–395 nm range, confirming its location in isolated cavities. In rebinding studies of the template molecules, the MIPs selectively took up the template for which the cavity was designed, which demonstrated their selectivity towards template molecules. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1558–1565  相似文献   

18.
A novel l‐ phenylalanine molecularly imprinted solid‐phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion‐pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid‐phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l‐ phenylalanine. Under the optimized conditions of the procedure, an analytical method for l‐ phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse‐phase silica gel, the obtained molecularly imprinted polymer as an solid‐phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L?1) for the isolation of l‐ phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion‐pair dummy template imprinting is effective for preparing selective solid‐phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples.  相似文献   

19.
Summary: Bovine serum albumin imprinted calcium phosphate/alginate hydrogel microspheres were prepared with sodium alginate (SA), (NH4)2HPO4, and using CaCl2 as gelling agent, bovine serum albumin (BSA) as template in inverse suspension. The optimized rebinding properties of BSA imprinted hydrogel microspheres were investigated by controlling pH value and ionic concentration from the viewpoint of adjusting the process of gelling, removing template and rebinding. The optimized pH values for the imprinting of BSA in gelling, removing template and rebinding process was 4.1, 8.3 and 4.8, respectively. The effect of NaCl concentration on the BSA rebinding was also determined. We provided a strategy to get the optimized imprinting efficiency by altering pH value and ionic concentration in a weakly ionic cross-linked hydrogel system on the process of protein's imprinting.  相似文献   

20.
Propranolol was imprinted using noncovalent interactions in the shell of core-shell nanoparticles prepared by aqueous emulsion polymerization in the presence and absence of toluene. The imprinted particles were characterized, and their capacity to rebind propranolol from both organic and aqueous media was analyzed. Results showed that the amount of template incorporated into the polymer and the presence of toluene as a "porogenic" agent influenced the ability of the nanoparticles obtained to rebind propranolol. The presence of toluene during imprinting increased rebinding by about 2-fold in buffer and by 3-fold in toluene, compared with similar materials made in the absence of toluene during imprinting. It also influenced the final surface area of the particles. Binding site affinity, assessed by radioligand displacement, was measured as IC50 values of about 1-10 microM. This compares with about 3 microM for bulk polymer made with a similar composition. Finally, to demonstrate the advantages of structured particles for analytical applications a new property, fluorescence, was incorporated into the core of the particles without interfering with the imprinted shell and its ability to rebind propranolol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号