首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
康建宏  谭文长 《力学学报》2018,50(6):1436-1457
基于修正的Darcy模型, 介绍了多孔介质内黏弹性流体热对流稳定性研究的现状和主要进展. 通过线性稳定性理论, 分析计算多孔介质几何形状(水平多孔介质层、多孔圆柱以及多孔方腔)、热边界条件(底部等温加热、底部等热流加热、底部对流换热以及顶部自由开口边界)、黏弹性流体的流动模型(Darcy-Jeffrey, Darcy-Brinkman-Oldroyd以及Darcy-Brinkman -Maxwell模型)、局部热非平衡效应以及旋转效应对黏弹性流体热对流失稳的临界Rayleigh数的影响. 利用弱非线性分析方法, 揭示失稳临界点附近热对流流动的分叉情况, 以及失稳临界点附近黏弹性流体换热Nusselt数的解析表达式. 采用数值模拟方法, 研究高Rayleigh数下黏弹性流体换热Nusselt数和流场的演化规律,分析各参数对黏弹性流体热对流失稳和对流换热速率的影响.主要结果:(1)流体的黏弹性能够促进振荡对流的发生;(2)旋转效应、流体与多孔介质间的传热能够抑制黏弹性流体的热对流失稳;(3)在临界Rayleigh数附近,静态对流分叉解是超临界稳定的, 而振荡对流分叉可能是超临界或者亚临界的,主要取决于流体的黏弹性参数、Prandtl数以及Darcy数;(4)随着Rayleigh数的增加,热对流的流场从单个涡胞逐渐演化为多个不规则单元涡胞, 最后发展为混沌状态.   相似文献   

2.
The effect of vertical throughflow on the onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is studied analytically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The dependences of the critical Rayleigh number for the non-oscillatory and oscillatory modes of instability on the thermophoresis and Brownian motion parameters for the cases with and without throughflow are investigated.  相似文献   

3.
This paper presents a linear stability analysis for the onset of natural convection in a horizontal nanofluid layer. The employed model incorporates the effects of Brownian motion and thermophoresis. Both monotonic and oscillatory convection for free–free, rigid–rigid, and rigid–free boundaries are investigated. The oscillatory instability is possible when nanoparticles concentrate near the bottom of the layer, so that the density gradient caused by such a bottom-heavy nanoparticle distribution competes with the density variation caused by heating from the bottom. It is established that the instability is almost purely a phenomenon due to buoyancy coupled with the conservation of nanoparticles. It is independent of the contributions of Brownian motion and thermophoresis to the thermal energy equation. Rather, the Brownian motion and thermophoresis enter to produce their effects directly into the equation expressing the conservation of nanoparticles so that the temperature and the particle density are coupled in a particular way, and that results in the thermal and concentration buoyancy effects being coupled in the same way.  相似文献   

4.
The stability analysis of the quiescent state in a Maxwell fluid-saturated densely packed porous medium subject to vertical concentration and temperature gradients is presented. A single phase model with local thermal equilibrium between the porous matrix and the Maxwell fluid is assumed. The critical Darcy–Rayleigh numbers and the corresponding wave numbers for the onset of stationary and oscillatory convection are determined. A Lorenz like system is obtained for weakly nonlinear stability analysis.  相似文献   

5.
The effect of thermal/gravity modulation on the onset of convection in a Maxwell fluid saturated porous layer is investigated by a linear stability analysis. Modified Darcy–Maxwell model is used to describe the fluid motion. The regular perturbation method based on the small amplitude of modulation is employed to compute the critical Rayleigh number and the corresponding wavenumber. The stability of the system characterized by a correction Rayleigh number is calculated as a function of the viscoelastic parameter, Darcy–Prandtl number, normalized porosity, and the frequency of modulation. It is found that the low frequency symmetric thermal modulation is destabilizing while moderate and high frequency symmetric modulation is always stabilizing. The asymmetric modulation and lower wall temperature modulations are, in general, stabilizing while the system becomes unstable for large values of Darcy–Prandtl number and for small frequencies. It is shown that in general the gravity modulation produces a stabilizing effect on the onset of convection for moderate and high frequency. The small frequency gravity modulation is found to have destabilizing effect on the stability of the system.  相似文献   

6.
The problem of thermal convection instability of a horizontal fluid layer with suspended particles has been studied for low-Prandtl number in the presence of vertical and horizontal temperature gradients. It has been found that the critical Rayleigh number (for both free and rigid conducting boundaries) increases due to the presence of particles. We also find the oscillatory modes for a vanishingly small Prandtl number. The critical Rayleigh number is inversely proportional to the wavelength. Due to the effect of suspended particles the frequency increases while the wavelength decreases. We have to find out the approximate stability characteristics.  相似文献   

7.
The onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is studied analytically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. For the porous medium, the Brinkman model is employed. Three cases of free–free, rigid–rigid, and rigid–free boundaries are considered. The analysis reveals that for a typical nanofluid (with large Lewis number), the prime effect of the nanofluids is via a buoyancy effect coupled with the conservation of nanoparticles, whereas the contribution of nanoparticles to the thermal energy equation is a second-order effect. It is found that the critical thermal Rayleigh number can be reduced or increased by a substantial amount, depending on whether the basic nanoparticle distribution is top-heavy or bottom-heavy, by the presence of the nanoparticles. Oscillatory instability is possible in the case of a bottom-heavy nanoparticle distribution.  相似文献   

8.
The coupled buoyancy and thermocapillary instability, the Bénard–Marangoniproblem, in an electrically conducting fluid layer whose upper surface is deformed and subject to a temperature gradient is studied. Both influences of an a.c. electric field and rotation are investigated. Special attention is directed at the occurrence of convection both in the form of stationary motion and oscillatory convection. The linear stability problem is solved for different values of the relevant dimensionless numbers, namely the a.c. electric Rayleigh number, the Taylor, Rayleigh, Biot, Crispation and Prandtl numbers. For steady convection, it is found that by increasing the angular velocity, one reinforces the stability of the fluid layer whatever the values of the surface deformation and the applied a.c. electric field. We have also determined the regions of oscillatory instability and discussed the competition between both stationary and oscillatory convections. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
It is shown that the critical Rayleigh number which characterizes the stability of a thin charged viscous fluid film on the surface of a rigid spherical core develops rapidly with decrease in the film thickness to 100 nm when the effect of the disjoining pressure becomes significant. The dependence of the instability growth rate on the thickness of the fluid layer is obtained by analyzing the dispersion relation numerically. Yaroslavl’. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 102–106, January–February, 1999.  相似文献   

10.
The vertical throughflow with viscous dissipation in a horizontal porous layer is studied. The horizontal plane boundaries are assumed to be isothermal with unequal temperatures and bottom heating. A basic stationary solution of the governing equations with a uniform vertical velocity field (throughflow) is determined. The temperature field in the basic solution depends only on the vertical coordinate. Departures from the linear heat conduction profile are displayed by the temperature distribution due to the forced convection effect and to the viscous dissipation effect. A linear stability analysis of the basic solution is carried out in order to determine the conditions for the onset of convective rolls. The critical values of the wave number and of the Darcy–Rayleigh number are determined numerically by the fourth-order Runge–Kutta method. It is shown that, although generally weak, the effect of viscous dissipation yields an increase of the critical value of the Darcy–Rayleigh number for downward throughflow and a decrease in the case of upward throughflow. Finally, the limiting case of a vanishing boundary temperature difference is discussed.  相似文献   

11.
This paper concerns the dynamics of two layers of compressible, barotropic, viscous fluid lying atop one another. The lower fluid is bounded below by a rigid bottom, and t he upper fluid is bounded above by a trivial fluid of constant pressure. This is a free boundary problem: the interfaces between the fluids and above the upper fluid are free to move. The fluids are acted on by gravity in the bulk, and at the free interfaces we consider both the case of surface tension and the case of no surface forces.We are concerned with the Rayleigh–Taylor instability when the upper fluid is heavier than the lower fluid along the equilibrium interface. When the surface tension at the free internal interface is below the critical value, we prove that the problem is nonlinear unstable.  相似文献   

12.
A theoretical analysis of buoyancy-driven instability under transient basic fields is conducted in an initially quiescent, fluid-saturated, horizontal porous layer. Darcy’s law is used to explain characteristics of fluid motion and the anisotropy of permeability is considered. Under the Boussinesq approximation and the principle of exchange of stabilities, the stability equations are derived by using the linear stability theory and the energy method. The linear stability equations are analyzed numerically by using the frozen-time model and the linear amplification theory and the global stability limits are obtained numerically from the energy method. For the various anisotropic ratios, the critical times are predicted as a function of the Darcy–Rayleigh number and the critical Darcy–Rayleigh number is also obtained. The present predictions are compared each another and with existing theoretical ones.  相似文献   

13.
The effect of the Coriolis force on the onset of convection in a plane horizontal layer of viscous fluid with a fixed heat flux on the rigid lower and free upper boundaries is investigated. Expressions for the critical Rayleigh numbers and wave number are obtained analytically in the rapid rotation limit.Perm'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 42–46, May–June, 1994.  相似文献   

14.
Laminar natural convection has been studied in a laterally heated vertical cylindrical enclosure with a free insulated surface and a centrally located constant temperature wall at the top. These conditions are a simplification of the conditions existing in a Czochralski crystal pulling system. The laminar, axisymmetric flow of a Newtonian, constant physical properties fluid under Boussinesq’s approximation has been considered. Governing equations in primitive variable form are solved numerically by control volume method. SIMPLE algorithm due to Patankar has been used for the numerical simulation. The effects of the constant wall heat flux boundary condition at the side wall have been investigated whereas the bottom wall is considered to be insulated. Streamlines and isotherms are presented for various Rayleigh numbers and Prandtl numbers. Heat flux vectors through the melt are plotted for selected cases. The axial velocity and temperature variations at different horizontal sections of the crucible have been presented graphically to explain the transport processes inside the crucible. It has been observed that in case of low Pr and high Ra, flow separation occurs at the vertical wall of the crucible which leads to an oscillatory flow as Ra increases. The investigation has been extended to the oscillatory regime of flow in the zone of supercritical Rayleigh numbers and some unsteady results are also presented. Finally a heat transfer correlation has been developed for steady-state case.  相似文献   

15.
Linear stability analysis has been performed to investigate the effect of internal heat generation on the criterion for the onset of Marangoni convection in a two-layer system comprising an incompressible fluid-saturated anisotropic porous layer over which lies a layer of the same fluid. The upper non-deformable free surface and the lower rigid surface are assumed to be insulated to temperature perturbations. The fluid flow in the porous layer is governed by the modified Darcy equation and the Beavers–Joseph empirical slip condition is employed at the interface between the two layers. The resulting eigenvalue problem is solved exactly. Besides, analytical expression for the critical Marangoni number is also obtained by using regular perturbation technique with wave number as a perturbation parameter. The effect of internal heating in the porous layer alone exhibits more stabilizing effect on the system compared to its presence in both fluid and porous layers and the system is least stable if the internal heating is in fluid layer alone. It is found that an increase in the value of mechanical anisotropy parameter is to hasten the onset of Marangoni convection while an opposite trend is noticed with increasing thermal anisotropy parameter. Besides, the possibilities of controlling (suppress or augment) Marangoni convection is discussed in detail.  相似文献   

16.
The effect of Coriolis force on the onset of ferromagnetic convection in a rotating horizontal ferrofluid saturated porous layer in the presence of a uniform vertical magnetic field is studied. The boundaries are considered to be either stress free or rigid. The modified Brinkman–Forchheimer-extended Darcy equation with fluid viscosity different from effective viscosity is used to characterize the fluid motion. The condition for the occurrence of direct and Hopf bifurcations is obtained analytically in the case of free boundaries, while for rigid boundaries the eigenvalue problem has been solved numerically using the Galerkin method. Contrary to their stabilizing effect in the absence of rotation, increasing the ratio of viscosities, Λ, and decreasing the Darcy number Da show a partial destabilizing effect on the onset of stationary ferromagnetic convection in the presence of rotation, and some important observations are made on the stability characteristics of the system. Moreover, the similarities and differences between free–free and rigid–rigid boundaries in the presence of buoyancy and magnetic forces together or in isolation are emphasized in triggering the onset of ferromagnetic convection in a rotating ferrofluid saturated porous layer. For smaller Taylor number domain, the stress-free boundaries are found to be always more unstable than in the case of rigid boundaries. However, this trend is reversed at higher Taylor number domain because the stability of the stress-free case is increased more quickly than the rigid case.  相似文献   

17.
A linear stability analysis determining the critical Rayleigh number R c for onset of convection in a bounded vertical cylinder containing a fluid-saturated porous medium is performed for insulated sidewalls, isothermal top surface, and bottom surface heated by forced convection. This Newtonian heating of the bottom surface involves a Biot number Bi that allows consideration of the continuum of boundary conditions ranging from constant heat flux, with global minimum R min=27.096 found as Bi→0, to isothermal, with global minimum R min=4π2 found as Bi→ ∞. In both cases and for most cylinder aspect ratios, incipient convection sets in as an asymmetric mode, though islands of aspect ratio exist where the onset mode is symmetric. Sample three-dimensional renderings of disturbance temperature distributions showing preferred modes at onset of convection for fixed Bi are provided and an analytical fit to R min as a function of Bi is given.  相似文献   

18.
We investigate the oscillatory chemical dynamics in a closed isothermal reaction system described by the reversible Lotka–Volterra model. This is a three-dimensional, dissipative, singular perturbation to the conservative Lotka–Volterra model, with the free energy serving as a global Lyapunov function. We will show that there is a natural distinction between oscillatory and non-oscillatory regions in the phase space, that is, while orbits ultimately reach the equilibrium in a non-oscillatory fashion, they exhibit damped, oscillatory behaviors as interesting transient dynamics.  相似文献   

19.
The onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is studied analytically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. For the porous medium, the Brinkman model is employed. Three cases of free–free, rigid–rigid, and rigid–free boundaries are considered. The analysis reveals that for a typical nanofluid (with large Lewis number), the prime effect of the nanofluids is via a buoyancy effect coupled with the conservation of nanoparticles, whereas the contribution of nanoparticles to the thermal energy equation is a second-order effect. It is found that the critical thermal Rayleigh number can be reduced or increased by a substantial amount, depending on whether the basic nanoparticle distribution is top-heavy or bottom-heavy, by the presence of the nanoparticles. Oscillatory instability is possible in the case of a bottom-heavy nanoparticle distribution.  相似文献   

20.
The effect of thermodiffusion on the onset of thermocapillary instability in the presence of a surfactant is investigated with reference to a plane liquid layer. It is shown that taking the Soret effect into account leads to destabilization in the case of heating of both the rigid surface and the free boundary. Krasnoyarsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 3–9, May–June, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号