首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is studied analytically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. For the porous medium, the Brinkman model is employed. Three cases of free–free, rigid–rigid, and rigid–free boundaries are considered. The analysis reveals that for a typical nanofluid (with large Lewis number), the prime effect of the nanofluids is via a buoyancy effect coupled with the conservation of nanoparticles, whereas the contribution of nanoparticles to the thermal energy equation is a second-order effect. It is found that the critical thermal Rayleigh number can be reduced or increased by a substantial amount, depending on whether the basic nanoparticle distribution is top-heavy or bottom-heavy, by the presence of the nanoparticles. Oscillatory instability is possible in the case of a bottom-heavy nanoparticle distribution.  相似文献   

2.
The linear stability theory for the Horton–Rogers–Lapwood problem is extended to the case where the porous medium is saturated by a nanofluid with thermal conductivity and viscosity dependent on the nanoparticle volume fraction. The effects of Brownian motion and thermophoresis are considered. In conjunction with the Brownian motion, the nanoparticle fraction becomes stratified, and hence the viscosity and the conductivity are stratified. The nanofluid is assumed to be dilute and this enables the porous medium to be treated as a weakly heterogeneous medium with variation, in the vertical direction, of conductivity and viscosity. In turn this allows an approximate analytical solution to be obtained.  相似文献   

3.
This paper presents a linear stability analysis for the onset of natural convection in a horizontal nanofluid layer. The employed model incorporates the effects of Brownian motion and thermophoresis. Both monotonic and oscillatory convection for free–free, rigid–rigid, and rigid–free boundaries are investigated. The oscillatory instability is possible when nanoparticles concentrate near the bottom of the layer, so that the density gradient caused by such a bottom-heavy nanoparticle distribution competes with the density variation caused by heating from the bottom. It is established that the instability is almost purely a phenomenon due to buoyancy coupled with the conservation of nanoparticles. It is independent of the contributions of Brownian motion and thermophoresis to the thermal energy equation. Rather, the Brownian motion and thermophoresis enter to produce their effects directly into the equation expressing the conservation of nanoparticles so that the temperature and the particle density are coupled in a particular way, and that results in the thermal and concentration buoyancy effects being coupled in the same way.  相似文献   

4.
Foam metals with micro pores own excellent thermal performance, however, poor heat conductive ability of most heat-transfer fluids restricts further heat transfer improvement. Combination of foam metal and nanofluid with highly conductive nanoparticles is a promising solution. Convective thermal characteristics of nanofluids in porous foams are theoretically investigated in this work. Effects of Brownian motion and thermophoretic diffusion of nanoparticles in the base fluid on thermal performance are considered. The nanoparticle and the base-fluid are considered to be in thermal equilibrium and the temperature difference between the nanofluid and foam ligaments is especially considered. Compared with the base-fluid flow in a duct, the velocity distribution for the nanofluid flow in a porous foam is more uniform with a decreased dimensionless temperature. The pressure drop of the nanofluid increases with an increase in the concentration of the nanoparticles. By employing foam metals and nanofluid, the cross-sectional temperature becomes closer to the wall temperature. Simultaneously, notable difference between solid and fluid temperatures can be observed, revealing the LTNE effect of the nanofluid on the porous foam. It is found that the Nusselt number first increases and then decreases with an increase in nanoparticle concentration. Furthermore, the Nusselt number decreases with an increase in the foam porosity. It is found that the thermal performance of a nanofluid in a plain tube is different from that in the foam metals.  相似文献   

5.
Numerical analysis is performed to examine laminar free convective of a nanofluid along a vertical wavy surface saturated porous medium. In this pioneering study, we have considered the simplest possible boundary conditions, namely those in which both the temperature and the nanoparticle fraction are constant along the wall. Non-similar transformations are presented for the governing equations and the obtained PDE are then solved numerically employing a fourth order Runge–Kutta method with shooting technique. A detailed parametric study (nanofluid parameters) is performed to access the influence of the various physical parameters on the local Nusselt number and the local Sherwood number. The results of the problem are presented in graphical forms and discussed.  相似文献   

6.
The present work aims at studying the thermal instability in a rotating porous layer saturated by a nanofluid based on a new boundary condition for the nanoparticle fraction, which is physically more realistic. The model used for nanofluid combines the effect of Brownian motion along with thermophoresis, while for a porous medium Brinkman model has been used. A more realistic set of boundary conditions where the nanoparticle volume fraction adjusts itself including the contributions of the effect of thermophoresis so that the nanoparticle flux is zero at the boundaries has been considered. Using linear stability analysis, the expression for critical Rayleigh number has been obtained in terms of various non-dimensional parameters. The effect of various parameters on the onset of instability has been presented graphically and discussed in detail.  相似文献   

7.
In the present article, we study the effect of local thermal non-equilibrium on the linear and non-linear thermal instability in a nanofluid saturated rotating porous layer. The Darcy Model has been used for the porous medium, while the nanofluid layer incorporates the effect of Brownian motion along with thermophoresis. A three-temperature model is been used for the effect of local thermal non-equilibrium among the particle, fluid, and solid–matrix phases. The linear stability analysis is based on normal mode technique, while for nonlinear analysis a minimal representation of the truncated Fourier series analysis involving only two terms has been used.  相似文献   

8.
The steady laminar incompressible free convective flow of a nanofluid over a permeable upward facing horizontal plate located in porous medium taking into account the thermal convective boundary condition is studied numerically. The nanofluid model used involves the effect of Brownian motion and the thermophoresis. Using similarity transformations the continuity, the momentum, the energy, and the nanoparticle volume fraction equations are transformed into a set of coupled similarity equations, before being solved numerically, by an implicit finite difference numerical method. Our analysis reveals that for a true similarity solution, the convective heat transfer coefficient related with the hot fluid and the mass transfer velocity must be proportional to x −2/3, where x is the horizontal distance along the plate from the origin. Effects of the various parameters on the dimensionless longitudinal velocity, the temperature, the nanoparticle volume fraction, as well as on the rate of heat transfer and the rate of nanoparticle volume fraction have been presented graphically and discussed. It is found that Lewis number, the Brownian motion, and the convective heat transfer parameters increase the heat transfer rate whilst the thermophoresis decreases the heat transfer rate. It is also found that Lewis number and the convective heat transfer parameter enhance the nanoparticle volume fraction rate whilst the thermophoresis parameter decreases nanoparticle volume fraction rate. A very good agreement is found between numerical results of the present article for special case and published results. This close agreement supports the validity of our analysis and the accuracy of the numerical computations.  相似文献   

9.
The onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is analytically studied. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. For the porous medium, the Darcy model is employed. The effect of local thermal non-equilibrium among the particle, fluid, and solid-matrix phases is investigated using a three-temperature model. The analysis reveals that in some circumstances the effect of LTNE can be significant, but for a typical dilute nanofluid (with large Lewis number and with small particle-to-fluid heat capacity ratio) the effect is small.  相似文献   

10.
The thermal performance of a nanofluid in a cooling chamber with variations of the nanoparticle diameter is numerically investigated. The chamber is filled with water and nanoparticles of alumina (Al2O3). Appropriate nanofluid models are used to approximate the nanofluid thermal conductivity and dynamic viscosity by incorporating the effects of the nanoparticle concentration, Brownian motion, temperature, nanoparticles diameter, and interfacial layer thickness. The horizontal boundaries of the square domain are assumed to be insulated, and the vertical boundaries are considered to be isothermal. The governing stream-vorticity equations are solved by using a secondorder central finite difference scheme coupled with the mass and energy conservation equations. The results of the present work are found to be in good agreement with the previously published data for special cases. This study is conducted for the Reynolds number being fixed at Re = 100 and different values of the nanoparticle volume fraction, Richardson number, nanofluid temperature, and nanoparticle diameter. The results show that the heat transfer rate and the Nusselt number are enhanced by increasing the nanoparticle volume fraction and decreasing the Richardson number. The Nusselt number also increases as the nanoparticle diameter decreases.  相似文献   

11.
The effect of Coriolis force on the onset of ferromagnetic convection in a rotating horizontal ferrofluid saturated porous layer in the presence of a uniform vertical magnetic field is studied. The boundaries are considered to be either stress free or rigid. The modified Brinkman–Forchheimer-extended Darcy equation with fluid viscosity different from effective viscosity is used to characterize the fluid motion. The condition for the occurrence of direct and Hopf bifurcations is obtained analytically in the case of free boundaries, while for rigid boundaries the eigenvalue problem has been solved numerically using the Galerkin method. Contrary to their stabilizing effect in the absence of rotation, increasing the ratio of viscosities, Λ, and decreasing the Darcy number Da show a partial destabilizing effect on the onset of stationary ferromagnetic convection in the presence of rotation, and some important observations are made on the stability characteristics of the system. Moreover, the similarities and differences between free–free and rigid–rigid boundaries in the presence of buoyancy and magnetic forces together or in isolation are emphasized in triggering the onset of ferromagnetic convection in a rotating ferrofluid saturated porous layer. For smaller Taylor number domain, the stress-free boundaries are found to be always more unstable than in the case of rigid boundaries. However, this trend is reversed at higher Taylor number domain because the stability of the stress-free case is increased more quickly than the rigid case.  相似文献   

12.
The Brinkman extended Darcy model including Lapwood and Forchheimer inertia terms with fluid viscosity being different from effective viscosity is employed to investigate the effect of vertical throughflow on thermal convective instabilities in a porous layer. Three different types of boundary conditions (free–free, rigid–rigid and rigid–free) are considered which are either conducting or insulating to temperature perturbations. The Galerkin method is used to calculate the critical Rayleigh numbers for conducting boundaries, while closed form solutions are achieved for insulating boundaries. The relative importance of inertial resistance on convective instabilities is investigated in detail. In the case of rigid–free boundaries, it is found that throughflow is destabilizing depending on the choice of physical parameters and the model used. Further, it is noted that an increase in viscosity ratio delays the onset of convection. Standard results are also obtained as particular cases from the general model presented here.  相似文献   

13.
The effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluid saturated porous medium are examined numerically. The Darcy–Brinkman–Forchheimer model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy–Brinkman–Forchheimer model of porous media. The simultaneous development of the momentum and thermal boundary layers are obtained by using a finite difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as local friction factor and local Nusselt number are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach steady state.  相似文献   

14.
The jet boiling heat transfer of a bar water–CuO particle suspensions (nanofluids) jet impingement on a large flat surface was experimentally investigated. The experimental results were compared with those from water. The quantificational effects of the nanoparticles concentration and the flow conditions on the nucleate boiling heat transfer and the critical heat flux (CHF) were investigated. The experimental data showed that the jet boiling heat transfer for the water–CuO nanofluid is significantly different from those for water. The nanofluids have poor nucleate boiling heat transfer compared with the base fluid due to that a very thin nanoparticle sorption layer was formed on the heated surface. The CHF for the nanofluid increased compared with that of water. The reasons were that the solid–liquid contact angle decreased due to a very thin sorption layer on the heated surface and the jet and agitating effect of the nanoparticles on the subfilm layer enhance supply of liquid to the surface.  相似文献   

15.
Linear and nonlinear stability analysis for the onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is studied. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The modified Darcy equation that includes the time derivative term is used to model the momentum equation. In conjunction with the Brownian motion, the nanoparticle fraction becomes stratified, hence the viscosity and the conductivity are stratified. The nanofluid is assumed to be diluted and this enables the porous medium to be treated as a weakly heterogeneous medium with variation, in the vertical direction, of conductivity and viscosity. The critical Rayleigh number, wave number for stationary and oscillatory mode and frequency of oscillations are obtained analytically using linear theory and the non-linear analysis is made with minimal representation of the truncated Fourier series analysis involving only two terms. The effect of various parameters on the stationary and oscillatory convection is shown pictorially. We also study the effect of time on transient Nusselt number and Sherwood number which is found to be oscillatory when time is small. However, when time becomes very large both the transient Nusselt value and Sherwood value approaches to their steady state values.  相似文献   

16.
A numerical study of mixed convection in a vertical channel filled with a porous medium including the effect of inertial forces is studied by taking into account the effect of viscous and Darcy dissipations. The flow is modeled using the Brinkman–Forchheimer-extended Darcy equations. The two boundaries are considered as isothermal–isothermal, isoflux–isothermal and isothermal–isoflux for the left and right walls of the channel and kept either at equal or at different temperatures. The governing equations are solved numerically by finite difference method with Southwell–Over–Relaxation technique for extended Darcy model and analytically using perturbation series method for Darcian model. The velocity and temperature fields are obtained for various porous parameter, inertia effect, product of Brinkman number and Grashof number and the ratio of Grashof number and Reynolds number for equal and different wall temperatures. Nusselt number at the walls is also determined for three types of thermal boundary conditions. The viscous dissipation enhances the flow reversal in the case of downward flow while it counters the flow in the case of upward flow. The Darcy and inertial drag terms suppress the flow. It is found that analytical and numerical solutions agree very well for the Darcian model. An erratum to this article is available at .  相似文献   

17.
This article is concerned with the effects of flow and migration of nanoparticles on heat transfer in a straight channel occupied with a porous medium. Investigation of force convective heat transfer of nanofluids in a porous channel has not been considered completely in the literature and this challenge is generally considered to be an open research topic that may require more study. The fully developed flow and steady Darcy?CBrinkman?CForchheimer equation is employed in porous channel. The thermal equilibrium model is assumed between nanofluid and solid phases. It is assumed that the nanoparticles are distributed non-uniformly inside the channel. As a result the volume fraction distribution equation is also coupled with governing equations. The effects of parameters such as Lewis number, Schmidt number, Brownian diffusion, and thermophoresis on the heat transfer are completely studied. The results show that the local Nusselt number is decreased when the Lewis number is increased. It is observed that as the Schmidt number is increased, the wall temperature gradient is decreased and as a consequence the local Nusselt number is decreased. The effects of Lewis number, Schmidt number, and modified diffusivity ratio on the volume fraction distribution are also studied and discussed.  相似文献   

18.
An analysis of fully developed combined free and forced convective flow in a fluid saturated porous medium channel bounded by two vertical parallel plates is presented. The flow is modeled using Brinkman equation model. The viscous and Darcy dissipation terms are also included in the energy equation. Three types of thermal boundary conditions such as isothermal–isothermal, isoflux–isothermal, and isothermal–isoflux for the left–right walls of the channel are considered. Analytical solutions for the governing ordinary differential equations are obtained by perturbation series method. In addition, closed form expressions for the Nusselt number at both the left and right channel walls are derived. Results have been presented for a wide range of governing parameters such as porous parameter, ratio of Grashof number and Reynolds number, viscosity ratio, width ratio, and conductivity ratio on velocity, and temperature fields. It is found that the presence of porous matrix in one of the region reduces the velocity and temperature.  相似文献   

19.
The effect of local thermal non-equilibrium on linear and non-linear thermal instability in a horizontal porous medium saturated by a nanofluid has been investigated analytically. The Brinkman Model has been used for porous medium, while nanofluid incorporates the effect of Brownian motion along with thermophoresis. A three-temperature model has been used for the effect of local thermal non-equilibrium among the particle, fluid, and solid-matrix phases. The linear stability is based on normal mode technique, while for nonlinear analysis, a minimal representation of the truncated Fourier series analysis involving only two terms has been used. The critical conditions for the onset of convection and the heat and mass transfer across the porous layer have been obtained numerically.  相似文献   

20.
In this article, we study double-diffusive convection in a horizontal porous medium saturated by a nanofluid, for the case when the base fluid of the nanofluid is itself a binary fluid such as salty water. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis, while the Darcy model is used for the porous medium. The thermal energy equations include the diffusion and cross-diffusion terms. The linear stability is studied using normal mode technique and for non-linear analysis, a minimal representation of the truncated Fourier series analysis involving only two terms has been used. For linear theory analysis, critical Rayleigh number has been obtained, while non-linear analysis has been done in terms of the Nusselt numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号