首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The comprehensive study of conductivity σ, Hall coefficient RH and Seebeck coefficient S has been carried out on high-quality single crystals of CeB6 in a wide range of temperatures 1.8-300 K. An anomalous behavior of all transport characteristics (σ, RH, S) was found for the first time in the vicinity of T*≈80 K. The strong decrease of conductivity σ as well as the unusual asymptotic behavior of Seebeck coefficient S(T)∼−ln T observed below T* allowed us to conclude in favor of crossover between different regimes of charge transport in CeB6. The pronounced change of Hall mobility μH, which diminishes from the maximum value of 20 cm2/(V s) at T* to the values of ∼6 cm2/(V s) at T∼10 K, seems to be attributed to the strong enhancement of charge carriers scattering due to fast spin fluctuations on Ce-sites. The low-temperature anomalies of the charge transport characteristics are compared with the predictions of the Kondo-lattice model.  相似文献   

2.
For comparison with the Mn4+/Mn3+ oxoperovskites at the crossover from localized to itinerant behavior of the σ-bonding e electrons, the electronic properties of three oxygen non-stoichiometric, mixed-valent Fe4+/Fe3+ oxoperovskites were explored by measuring their resistivity ρ(T), thermoelectric power α(T), and magnetic susceptibility χ(T). Oxidation of Ca2Fe2O5 by annealing in ozone progresses by oxygen insertion to give conductive CaFeO3 perovskite clusters in a localized-electron, weakly oxidized brownmillerite Ca2Fe2O5+δ matrix. Removal of 0.12 oxygen per formula unit from La1/3Sr2/3FeO3 lowers somewhat its cooperative disproportionation reaction, and fivefold-coordinated ions neighboring oxygen vacancies in the more ionically bonded slabs act as donors to the covalently bonded Fe(V)O6 planes. Single-crystal SrFeO2.83 exhibited bad-metal behavior with superparamagnetic, electron-rich fluctuations below 240 K that, on cooling below 190 K, become progressively trapped by the oxide-ion vacancies as an immobile second phase; long-range antiferromagnetic order is stabilized below a TN≈60 K.  相似文献   

3.
The crystal and magnetic structures of the brownmillerite material, Ca2Fe1.039(8)Mn0.962(8)O5 were investigated using powder X-ray and neutron diffraction methods, the latter from 3.8 to 700 K. The compound crystallizes in Pnma space group with unit cell parameters of a=5.3055(5) Å, b=15.322(2) Å, c=5.4587(6) Å at 300 K. The neutron diffraction study revealed the occupancies of Fe3+ and Mn3+ ions in both octahedral and tetrahedral sites and showed some intersite mixing and a small, ∼4%, Fe excess. While bulk magnetization data were inconclusive, variable temperature neutron diffraction measurements showed the magnetic transition temperature to be 407(2) K below which a long range antiferromagnetic ordering of spins occurs with ordering wave vector k=(000). The spins of each ion are coupled antiferromagnetically with the nearest neighbors within the same layer and coupled antiparallel to the closest ions from the neighboring layer. This combination of intra- and inter-layer antiparallel arrangement of spins forms a G-type magnetic structure. The ordered moments on the octahedral and tetrahedral sites at 3.8 K are 3.64(16) and 4.23(16) μB, respectively.  相似文献   

4.
The crystal structure of an Li-bearing double-ring silicate mineral, sogdianite ((Zr1.18Fe3+0.55Ti0.24Al0.03)(?1.64,Na0.36)K0.85[Li3Si12O30], P6/mcc, a≈10.06 Å, c≈14.30 Å, Z=2), was investigated by neutron powder diffraction from 300 up to 1273 K. Rietveld refinements of displacement parameters revealed high anisotropic Li motions perpendicular to the crystallographic c-axis, indicating an exchange process between tetrahedral T2 and octahedral A sites. AC impedance spectra of a sogdianite single crystal (0.04×0.09×0.25 cm3) show that the material is an ionic conductor with conductivity values of σ=4.1×10−5 S cm−1 at 923 K and 1.2×10−3 S cm−1 at 1219 K perpendicular to the c-axis, involving two relaxation processes with activation energies of 1.26(3) and 1.08(3) eV, respectively.  相似文献   

5.
Brownmillerite calcium ferrite was synthesized in air at 1573 K and thermoelectric properties (direct current electrical conductivity σ, Seebeck coefficient α, thermal conductivity κ, thermal expansion αL) were measured from 373 to 1050 K in air. Seebeck coefficient was positive over all temperatures indicating conduction by holes, and electrical properties were continuous through the Pnma-Imma phase transition. Based on the thermopower and conductivity activation energies as well as estimated mobility, polaron hopping conduction was found to dominate charge transport. The low electrical conductivity, <1 S/cm, limits the power factor (α2σ), and thus the figure of merit for thermoelectric applications. The thermal conductivity values of ∼2 W/mK and their similarity to Ruddlesden-Popper phase implies the potential of the alternating tetrahedral and octahedral layers to limit phonon propagation through brownmillerite structures. Bulk linear coefficient of thermal expansion (∼14×10−6 K−1) was calculated from volume data based on high-temperature in situ X-ray powder diffraction, and shows the greatest expansion perpendicular to the alternating layers.  相似文献   

6.
Specific heat capacities (Cp) of polycrystalline samples of BaCeO3 and BaZrO3 have been measured from about 1.6 K up to room temperature by means of adiabatic calorimetry. We provide corrected experimental data for the heat capacity of BaCeO3 in the range T < 10 K and, for the first time, contribute experimental data below 53 K for BaZrO3. Applying Debye's T3-law for T → 0 K, thermodynamic functions as molar entropy and enthalpy are derived by integration. We obtain Cp = 114.8 (±1.0) J mol−1 K−1, S° = 145.8 (±0.7) J mol−1 K−1 for BaCeO3 and Cp = 107.0 (±1.0) J mol−1 K−1, S° = 125.5 (±0.6) J mol−1 K−1 for BaZrO3 at 298.15 K. These results are in overall agreement with previously reported studies but slightly deviating, in both cases. Evaluations of Cp(T) yield Debye temperatures and identify deviations from the simple Debye-theory due to extra vibrational modes as well as anharmonicity. The anharmonicity turns out to be more pronounced at elevated temperatures for BaCeO3. The characteristic Debye temperatures determined at T = 0 K are Θ0 = 365 (±6) K for BaCeO3 and Θ0 = 402 (±9) K for BaZrO3.  相似文献   

7.
The standard molar Gibbs energies of formation of LnFeO3(s) and Ln3Fe5O12(s) where Ln=Eu and Gd have been determined using solid-state electrochemical technique employing different solid electrolytes. The reversible e.m.f.s of the following solid-state electrochemical cells have been measured in the temperature range from 1050 to 1255 K.Cell (I): (−)Pt / {LnFeO3(s)+Ln2O3(s)+Fe(s)} // YDT/CSZ // {Fe(s)+Fe0.95O(s)} / Pt(+);Cell (II): (−)Pt/{Fe(s)+Fe0.95O(s)}//CSZ//{LnFeO3(s)+Ln3Fe5O12(s)+Fe3O4(s)}/Pt(+);Cell (III): (−)Pt/{LnFeO3(s)+Ln3Fe5O12(s)+Fe3O4(s)}//YSZ//{Ni(s)+NiO(s)}/Pt(+);andCell(IV):(−)Pt/{Fe(s)+Fe0.95O(s)}//YDT/CSZ//{LnFeO3(s)+Ln3Fe5O12(s)+Fe3O4(s)}/Pt(+).The oxygen chemical potentials corresponding to the three-phase equilibria involving the ternary oxides have been computed from the e.m.f. data. The standard Gibbs energies of formation of solid EuFeO3, Eu3Fe5O12, GdFeO3 and Gd3Fe5O12 calculated by the least-squares regression analysis of the data obtained in the present study are given byΔfm(EuFeO3, s) /kJ mol−1 (± 3.2)=−1265.5+0.2687(T/K)   (1050 ? T/K ? 1570),Δfm(Eu3Fe5O12, s)/kJ mol−1 (± 3.5)=−4626.2+1.0474(T/K)   (1050 ? T/K ? 1255),Δfm(GdFeO3, s) /kJ mol−1 (± 3.2)=−1342.5+0.2539(T/K)   (1050 ? T/K ? 1570),andΔfm(Gd3Fe5O12, s)/kJ·mol−1 (± 3.5)=−4856.0+1.0021(T/K)   (1050 ? T/K ? 1255).The uncertainty estimates for Δfm include the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagrams for the systems Eu-Fe-O and Gd-Fe-O and chemical potential diagrams for the system Gd-Fe-O were computed at 1250 K.  相似文献   

8.
The citrate-nitrate gel combustion route was used to prepare SrFe2O4(s), Sr2Fe2O5(s) and Sr3Fe2O6(s) powders and the compounds were characterized by X-ray diffraction analysis. Different solid-state electrochemical cells were used for the measurement of emf as a function of temperature from 970 to 1151 K. The standard molar Gibbs energies of formation of these ternary oxides were calculated as a function of temperature from the emf data and are represented as (SrFe2O4, s, T)/kJ mol−1 (±1.7)=−1494.8+0.3754 (T/K) (970?T/K?1151). (Sr2Fe2O5, s, T)/kJ mol−1 (±3.0)=−2119.3+0.4461 (T/K) (970?T/K?1149). (Sr3Fe2O6, s, T)/kJ mol−1 (±7.3)=−2719.8+0.4974 (T/K) (969?T/K?1150).Standard molar heat capacities of these ternary oxides were determined from 310 to 820 K using a heat flux type differential scanning calorimeter (DSC). Based on second law analysis and using the thermodynamic database FactSage software, thermodynamic functions such as ΔfH°(298.15 K), S°(298.15 K) S°(T), Cp°(T), H°(T), {H°(T)-H°(298.15 K)}, G°(T), free energy function (fef), ΔfH°(T) and ΔfG°(T) for these ternary oxides were also calculated from 298 to 1000 K.  相似文献   

9.
The magnetic structure of the Fe2P-type R6CoTe2 phases (R=Gd-Er, space group P6¯2m) has been investigated through magnetization measurement and neutron powder diffraction. All phases demonstrate high-temperature ferromagnetic and low-temperature transitions: TC=220 K and TCN=180 K for Gd6CoTe2, TC=174 K and TCN=52 K for Tb6CoTe2, TC=125 K and TCN=26 K for Dy6CoTe2, TCN=60 K and TN=22 K for Ho6CoTe2 and TCN∼30 K and TN∼14 K for Er6CoTe2.Between 174 and 52 K Tb6CoTe2 has a collinear magnetic structure with K0=[0, 0, 0] and with magnetic moments along the c-axis, whereas below 52 K it adopts a non-collinear ferromagnetic one.Below 60 K the magnetic structure of Ho6CoTe2 is that of a non-collinear ferromagnet. The holmium magnetic components with a K0=[0, 0, 0] wave vector are aligned ferromagneticaly along the c-axis, whereas the magnetic component with a K1=[1/2, 1/2, 0] wave vector are arranged in the ab plane. The low-temperature magnetic transition at ∼22 K coincides with the reorientation of the Ho magnetic component with the K0 vector from the collinear to the non-collinear state.Below 30 K Er6CoTe2 shows an amplitude-modulate magnetic structure with a collinear arrangement of magnetic components with K0=[0, 0, 0] and K1=[1/2, 1/2, 0]. The low-temperature magnetic transition at ∼14 K corresponds to the variation in the magnitudes of the MErK0 and MErK1 magnetic components.In these phases, no local moment was detected on the cobalt site.The magnetic entropy of Gd6CoTe2 increases from ΔSmag=−4.5 J/kg K at 220 K up to ΔSmag=−6.5 J/kg K at 180 K for the field change Δμ0H=0-5 T.  相似文献   

10.
Fluorination of the parent oxide, BaFeO3−δ, with polyvinylidine fluoride gives rise to a cubic compound with a=4.0603(4) Å at 298 K. 57Fe Mössbauer spectra confirmed that all the iron is present as Fe3+. Neutron diffraction data showed complete occupancy of the anion sites, indicating a composition BaFeO2F, with a large displacement of the iron off-site. The magnetic ordering temperature was determined as TN=645±5 K. Neutron diffraction data at 4.2 K established G-type antiferromagnetism with a magnetic moment per Fe3+ ion of 3.95 μB. However, magnetisation measurements indicated the presence of a weak ferromagnetic moment that is assigned to the canting of the antiferromagnetic structure. 57Fe Mössbauer spectra in the temperature range 10-300 K were fitted with a model of fluoride ion distribution that retains charge neutrality of the perovskite unit cell.  相似文献   

11.
A new Ni(II) layered hybrid organic-inorganic compound of formula Ni2[(NDI-BP)(H2O)2]·2H2O has been prepared in very mild conditions from N,N′-bis(2-phosphonoethyl)napthalene-1,4:5,8-tetracarboximide (NDI-BP ligand) and NiCl2. The X-ray powder structure characterization of the title compound suggests a pillared layered organic-inorganic hybrid structure. The distance between the organic and inorganic layers has been found to be 17.8 Å. The inorganic layers consist of corner sharing [NiO5(H2O)] octahedra and they are pillared by the diphosphonate groups. DC and AC magnetic measurements as a function of temperature and field indicate the presence of 2D antiferromagnetic exchange interactions between the nearest-neighbor Ni(II) ions below 100 K. A long-range magnetic ordering at Tc∼21 K has been established and is attributed to the presence of spin canting. AC magnetic measurements as a function of temperature at different frequencies confirm the occurrence of the magnetic ordering temperature at T=21 K and the presence of a slight structural disorder in the title compound.  相似文献   

12.
The transient hot-wire method has been used to measure the thermal conductivity κ and heat capacity per unit volume ρcp of untreated (virgin) and crosslinked cis-1,4-poly(isoprene) (PI) in the temperature range 160-513 K for pressures p up to 0.75 GPa. The results show that the crosslinking rate of the polymer chains becomes significant at ∼513 K on isobaric heating at 0.5 GPa changing PI into an elastomeric state within 4 h without the use of crosslinking agents. The crosslinked PI and untreated PI have about the same κ = 0.145 Wm−1 K−1 and cp = 1.81 kJ kg−1 K−1 at 295 K and 20 MPa, but different relaxation behaviours. Two relaxation processes, corresponding to the segmental and normal modes, could be observed in both PI and crosslinked PI but these have a larger distribution of relaxation times and become arrested at higher temperatures (∼10 K) in the latter case. The arrest temperature for the segmental relaxation of untreated and crosslinked PI, for a relaxation time of ∼1 s, are described well by the empirical relations: T(p) = 209.4 (1 + 4.02 p)0.31 and T(p) = 221.3 (1 + 2.33 p)0.40 (p in GPa and T in K), respectively, which thus also reflects the pressure variations of the glass transition temperatures.  相似文献   

13.
The morphologies of the charge carriers in the perovskite system SrFe1−xTixO3−δ are explored by transport and magnetic measurements. Oxygen vacancies are present in all samples, but they do not trap out the Fe3+ ions they introduce. The x=0.05 composition was prepared with three different values of δ. They all show small-polaron conduction above 225 K; but where there is a ratio c=Fe4+/Fe<0.5, the polaron morphology appears to change progressively with decreasing temperature below 225 K to two-Fe polarons that become ferromagnetically coupled in an applied magnetic field at lower temperatures; With an applied field of 2500 Oe, divergence of the paramagnetic susceptibility for zero-field-cooled and field-cooled samples manifests a greater stabilization of ferromagnetic pairs on cooling in the applied field. With a c>0.5, the data are consistent with a disproportionation reaction 2Fe4+=Fe3++Fe(V)O6/2 that inhibits formation of two-Fe polarons and, on lowering the temperature, creates Fe3+-Fe(V)-Fe3+ superparamagnetic clusters.  相似文献   

14.
Single crystals of the novel compound BaSn6Co6O19 with maximum width 1 mm and thickness around 0.05 mm were grown from a barium chloride flux. The composition was determined from refinements of single crystal X-ray diffraction data and microprobe analysis. BaSn6Co6O19 crystallizes in the magnetoplumbite type structure (hexagonal, space group P63/mmc, a=6.0940(1) Å, c=23.9633(5) Å, V=770.69 Å3, Z=2). A significant disorder is generated by random occupation of two octahedrally coordinated crystallographic sites with Co2+ and Sn4+ ions, while further sites are exclusively occupied by either Co2+ (tetrahedrally coordinated) or Sn4+ (octahedrally coordinated). One site with mixed occupation realizes the topology of a kagome net. The temperature dependence of the magnetic susceptibility for a single crystal BaSn6Co6O19 reveals a low temperature antiferromagnetic order at TN=14 K. A relatively large value of frustration factor f//=|ΘW//|/TN≈26 and f=|ΘW|/TN≈12 implies a frustrated antiferromagnetism.  相似文献   

15.
In order to reveal the nature of the ground state of archetypal intermediate-valence compound SmB6, a comprehensive study of its transport and magnetic properties was carried out on high-quality single crystals at temperatures of 1.8-300 K in magnetic fields up to 7 T. A drastic enhancement of negative magnetoresistance was observed below 14 K, with the maximum absolute value of Δρ/ρB2∼2.2×10−3 T−2 at T≈5.2 K. This effect seems to be attributable to anomalous magnetic scattering of many-body (exciton-polaronic) complexes induced by fast valence fluctuations on Sm sites. The observed anomalies of magnetotransport, thermoelectric and magnetic characteristics are discussed in terms of electron phase transition to the coherent state of interacting many-body complexes occurring at T*∼5 K.  相似文献   

16.
The crystallographic structure of DyNiO3 has been investigated at T=200, 100, and 2 K from high-resolution neutron powder diffraction (NPD) data. We show that the structure is monoclinic, space group P21/n, from the metal-insulator transition temperature at TMI=564 K down to 2 K. The Ni atoms occupy two different sites 2d (Ni1) and 2c (Ni2), whose valences, estimated from bond-valence consideration, are +2.43(1) and +3.44(1) at 2 K, respectively. This is interpreted as the result of a partial charge disproportionation of the type 2Ni3+→Ni1(3−δ)++Ni2(3+δ)+, with δ≈0.55 at T=2 K. The magnetic structure has been studied from a NPD pattern at T=2 K, well below the establishment of the antiferromagnetic (AFM) ordering at TN=154 K, as well as from sequential data collected from 16 K down to 2 K. The magnetic order is defined by the propagation vector k=(1/2,0,1/2). Two possible magnetic structures are compatible with the magnetic intensities. In the second solution both Ni sublattices participate in the magnetic order, as well as Dy since it corresponds to a total disproportionation of Ni3+ to Ni2+ and Ni4+. In the second solution both Ni sublattices participate in the magnetic order, as well as Dy. The magnetic moments for Ni1 and Ni2 atoms at T=2 K are 1.8 (2) and 0.8 (2) μB, respectively. These values are also compatible with a partial charge disproportionation. Dy3+ ions exhibit long-range magnetic ordering below 8 K. An abrupt contraction of the unit-cell volume is observed at this temperature, due to a magnetoelastic coupling. The magnetic moment for Dy3+ at T=2 K is 7.87 (6) μB.  相似文献   

17.
The dark AC conductivity and dielectric properties of thermally evaporated 2-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-ylimino)-2-(4-nitrophenyl)acetonitrile (DOPNA) thin films in sandwich structure employing symmetrical gold ohmic contacts have been investigated as function of temperature (303–443 K) and frequency (100 Hz–5 MHz). The AC conductivity, σAC(ω), is found to obey Jonscher’s universal power law, σAC(ω)=s (ω is the angular frequency). The AC conductivity of DOPNA thin films has been analyzed with reference to various theoretical models. The correlated barrier hopping is found to be the dominant conduction mechanism for charge carrier transport; the maximum barrier height, hopping length and the density of localized states are estimated. The temperature dependence of the AC conductivity shows Arrhenius type with two thermal activation energies. The activation energies are determined as a function of frequency. The behavior of the real and imaginary parts of the dielectric constant as a function of both temperature and frequency is discussed.  相似文献   

18.
In this study, with the aim to enhance the ionic conduction of known structures by defect chemistry, the La2O3-Ta2O5 system was considered with a focus on the La3TaO7 phase whose structure is of Weberite type. In order to predict possible preferential substitution sites and substitution elements, atomistic simulation was used as a first approach. A solid solution La3−xSrxTaO7−x/2 was confirmed by X-ray diffraction and Raman spectroscopy; it extends for a substitution ratio up to x = 0.15. Whereas La3TaO7 is a poor oxide ion conductor (σ700 °C = 2 × 10−5S.cm−1), at 700 °C, its ionic conductivity is increased by more than one order of magnitude when 3.3% molar strontium is introduced in the structure (σ700 °C = 2 × 10−4S.cm−1).  相似文献   

19.
The crystal structures and magnetic properties of the quaternary lanthanide oxides Ba6Ln2Fe4O15 (Ln=Pr and Nd) are reported. They crystallize in a hexagonal structure with space group P63mc and have the “Fe4O15 cluster” consisting of one FeO6 octahedron and three FeO4 tetrahedra. Measurements of the magnetic susceptibility, specific heat, and powder neutron diffraction reveal that this cluster behaves as a spin tetramer with a ferrimagnetic ground state of ST=5 even at room temperature. The cluster moments show a long-range antiferromagnetic ordering at 23.2 K (Ln=Pr) and 17.8 K (Nd), and the magnetic moments of the Ln3+ ions also order cooperatively. By applying the magnetic field (∼2 T), this antiferromagnetic ordering of the clusters changes to a ferromagnetic one. This result indicates that there exists a competition in the magnetic interaction between the clusters.  相似文献   

20.
《Solid State Sciences》2004,6(7):639-646
A series of polycrystalline garnet ferrites with composition Y3−2xCa2xFe5−xVxO12 (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), were prepared by the standard ceramic technique to study the effect of Ca2+ and V5+ ions substitution on their DC electrical conductivity, thermoelectric power, charge carrier concentration and charge carrier mobility at different temperatures. It was found that the DC electrical conductivity increases linearly with increasing temperature ensuring the semiconducting nature of samples. The lines representing the temperature dependence of σdc are broken at two-phase transition temperature (Tσ1, Tσ2=TC) giving three distinct regions (I, II and III). The activation energy for electrical conduction increases going from ferrimagnetic state (regions I and II) to paramagnetic state (region III) through the transition temperature Tσ2 (Curie temperature). It also increases going from region I to region II thorough the temperature Tσ1. The dc electrical conductivity does not vary uniformly with Ca2+ and V5+ ion substitution. The values of the thermoelectric power were positive for samples of 0.0⩽x⩽0.6 indicating that the majority of the carrier are holes in these samples while it were negative for samples of x⩾0.8 indicating that the majority of charge carriers are electrons in this samples. Using the values of the DC electrical conductivity and thermoelectric power, the values of the charge carrier concentration and the charge carrier mobility were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号