首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study degenerate nonlinear partial differential equations with dynamical boundary conditions describing the forced motions of nonuniform deformable bodies with heavy rigid attachments. We prove that the dynamical system generated by a discretization of these equations has an absorbing ball whose size is independent of the order of the discretization. This result implies the existence of an absorbing ball for the infinite-dimensional dynamical system corresponding to the original degenerate partial differential equation and thereby serves as a critical step for establishing the existence of global attractors for this system. Our results also address the interesting mechanical question of how nonuniformity complicates the longterm dynamics of the coupled systems we consider.  相似文献   

2.
The effects of discretization on the nonautonomous pullback attractors of skew-product flows generated by a class of dissipative differential equations, are investigated, It is assumed that the vector, field of the differential equations varies in time due to the input of an autonomous dynamical system acting on a compact metric space. In particular, it is shown that the corresponding discrete time skew-product system generated by a one-step numerical scheme with variable timesteps also has a pullback attractor, the component subsets of which converge upper semicontinuously to their counterparts of the pullback attractor of the original continuous time system.  相似文献   

3.
Attractors of a rotating viscoelastic beam   总被引:1,自引:0,他引:1  
We investigate the non-linear oscillations of a rotating viscoelastic beam with variable pitch angle. The governing equations of motion are two coupled partial differential equations for the longitudinal and transversal displacements. Using a perturbation technique and Galerkin's projection, we reduce the equations of motion to a non-autonomous ordinary differential equation. Our regular perturbation technique is based on the expansion of longitudinal displacement and the amplitude of first transversal mode in terms of a small parameter. We numerically generate the Poincaré maps of the reduced equations and reveal that the system exhibits regular and chaotic attractors. The regular attractors are stable limit-cycles that are relevant to stable, short-period oscillations of the beam. A bifurcation analysis has also been performed when the pitch angle is constant.  相似文献   

4.
A procedure for designing optimal bounded control to minimize the response of quasi-integrable Hamiltonian systems is proposed based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stochastic dynamical programming principle. The equations of motion of a controlled quasi-integrable Hamiltonian system are first reduced to a set of partially completed averaged Itô stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, the dynamical programming equation for the control problems of minimizing the response of the averaged system is formulated based on the dynamical programming principle. The optimal control law is derived from the dynamical programming equation and control constraints without solving the dynamical programming equation. The response of optimally controlled systems is predicted through solving the Fokker-Planck-Kolmogrov equation associated with fully completed averaged Itô equations. Finally, two examples are worked out in detail to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

5.
We first present some sufficient conditions for the existence and the construction of a pullback exponential attractor for the continuous process (non-autonomous dynamical system) on Banach spaces and weighted spaces of infinite sequences. Then we apply our results to study the existence of pullback exponential attractors for first order non-autonomous differential equations and partly dissipative differential equations on infinite lattices with time-dependent coupled coefficients and time-dependent external terms in weighted spaces.  相似文献   

6.
This paper deals with the analog circuit implementation and synchronization of a model consisting of a van der Pol oscillator coupled to a Duffing oscillator. The coupling between the two oscillators is set in a symmetrical way that linearly depends on the difference of the systems solutions (i.e., elastic coupling). The primary motivation of our investigations lays in the fact that coupled attractors of different types might serve as a good model for real systems in nature (e.g., electromechanical, physical, biological, or economic systems). The stability of fixed points is examined. The bifurcation structures of the system are analyzed with particular emphasis on the effects of nonlinearity. An appropriate electronic circuit (analog simulator) is proposed for the investigation of the dynamical behavior of the system. Correspondences are established between the coefficients of the system model and the components of the electronic circuit. A comparison of experimental and numerical results shows a very good agreement. By exploiting recent results on adaptive control theory, a controller is designed that enables both synchronization of two unidirectionally coupled systems and the estimation of unknown parameters of the drive system.  相似文献   

7.
We considered the longtime behavior of solutions of a coupled lattice dynamical system of Klein-Gordon-Schroedinger equation (KGS lattice system). We first proved the existence of a global attractor for the system considered here by introducing an equivalent norm and using "End Tails" of solutions. Then we estimated the upper bound of the Kolmogorov delta-entropy of the global attractor by applying element decomposition and the covering property of a polyhedron by balls of radii delta in the finite dimensional space. Finally, we presented an approximation to the global attractor by the global attractors of finite-dimensional ordinary differential systems.  相似文献   

8.
We considered the longtime behavior of solutions of a coupled lattice dynamical system of Klein-Gordon-Schrodinger equation (KGS lattice system). We first proved the existence of a global attractor for the system considered here by introducing an equivalent norm and using "End Tails" of solutions. Then we estimated the upper bound of the Kolmogorov delta-entropy of the global attractor by applying element decomposition and the covering property of a polyhedron by balls of radii delta in the finite dimensional space. Finally, we presented an approximation to the global attractor by the global attractors of finite-dimensional ordinary differential systems.  相似文献   

9.
Arnold  Ludwig  Chueshov  Igor  Ochs  Gunter 《Nonlinear dynamics》2004,36(2-4):135-179
This report is a survey of methods of stochastic and nonlinear dynamics in ship stability. After a brief introduction we describe the sea as a stationary random field. We then derive the general equations of motion of a ship from ‘first principles’, specializing to the case of the equations of motion for roll, heave and sway using strip theory from which eventually the ‘archetypal’ nonlinear random differential equation for the roll motion follows. This determines in particular how and where the stochasticity of the sea enters the equation. We then analyze simple nonlinear models of ship motion by means of the theory of random dynamical systems which amounts to studying invariant measures, Lyapunov exponents, random attractors and their (random) domain of attraction and to using stochastic bifurcation theory to describe qualitative changes.  相似文献   

10.
A nonlinear stochastic optimal control strategy for minimizing the first-passage failure of quasi integrable Hamiltonian systems (multi-degree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is proposed. The equations of motion for a controlled quasi integrable Hamiltonian system are reduced to a set of averaged Itô stochastic differential equations by using the stochastic averaging method. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and mean first-passage time are formulated. The optimal control law is derived from the dynamical programming equations and the control constraints. The final dynamical programming equations for these control problems are determined and their relationships to the backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the mean first-passage time are separately established. The conditional reliability function and the mean first-passage time of the controlled system are obtained by solving the final dynamical programming equations or their equivalent Kolmogorov and Pontryagin equations. An example is presented to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

11.
Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one, for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steady-state response of the electro-mechanical system exposed to a harmonic close-resonance mechanical excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a)?detuning (i.e. a natural frequency variation) and (b)?damping (i.e. a decay in the amplitude of vibration), are analyzed further. An applicability range of the mathematical model is assessed.  相似文献   

12.
In the paper, stationary solutions of stochastic differential equations driven by Lévy processes are considered. And the existence of these stationary solutions follows from the theory of random dynamical systems and their attractors. Moreover, under a one-sided Lipschitz continuity condition and a temperedness condition, Itô and Marcus stochastic differential equations driven by Lévy processes are proved to have stationary solutions. Besides, continuous dependence of stationary solutions on drift coefficients of these equations is presented.  相似文献   

13.
This short paper introduces a new 3D strange attractor topologically different from any other known chaotic attractors. The intentionally constructed model of three autonomous first-order differential equations derives from the coupling-induced complexity of the well-established 2D Lotka?CVolterra oscillator. Its chaotification process via an anti-equilibrium feedback allows the exploration of a new domain of dynamical behavior including chaotic patterns. To focus a rapid presentation, a fixed set of parameters is selected linked to the widest range of dynamics. Indeed, the new system leads to a chaotic attractor exhibiting a double scroll bridged by a loop. It mutates to a single scroll with a very stretched loop by the variation of one parameter. Indexes of stability of the equilibrium points corresponding to the two typical strange attractors are also investigated. To encompass the global behavior of the new low-dimensional dissipative dynamical model, diagrams of bifurcation displaying chaotic bubbles and windows of periodic oscillations are computed. Besides, the dominant exponent of the Lyapunov spectrum is positive reporting the chaotic nature of the system. Eventually, the novel chaotic model is suitable for digital signal encryption in the field of communication with a rich set of keys.  相似文献   

14.
A strategy is proposed based on the stochastic averaging method for quasi nonintegrable Hamiltonian systems and the stochastic dynamical programming principle. The proposed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation. By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional averaged Ito stochastic differential equation. By using the stochastic dynamical programming principle the dynamical programming equation for minimizing the response of the system is formulated.The optimal control law is derived from the dynamical programming equation and the bounded control constraints. The response of optimally controlled systems is predicted through solving the FPK equation associated with It5 stochastic differential equation. An example is worked out in detail to illustrate the application of the control strategy proposed.  相似文献   

15.
Zhang Yi 《力学学报》1957,52(6):1765
自然界和工程技术领域存在大量的非线性问题,它们通常需要用非线性微分方程来描述. 守恒量在微分方程的求解、约化和定性分析方面发挥重要作用. 因此,研究非线性动力学方程的近似守恒量具有重要意义. 文章利用 Noether 对称性方法研究弱非线性动力学方程的近似守恒量. 首先,将弱非线性动力学方程化为一般完整系统的 Lagrange 方程,在 Lagrange 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 其次,将弱非线性动力学方程化为相空间中一般完整系统的 Hamilton 方程,在 Hamilton 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 再次,将弱非线性动力学方程化为广义 Birkhoff 方程,在 Birkhoff 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 最后,以著名的 van der Pol 方程,Duffing 方程以及弱非线性耦合振子为例,分析三个不同框架下弱非线性系统的 Noether 准对称性与近似 Noether 守恒量的计算. 结果表明:同一弱非线性动力学方程可以化为不同的一般完整系统或不同的广义 Birkhoff 系统;Hamilton 框架下的结果是 Birkhoff 框架的特例,而 Lagrange 框架下的结果与 Hamilton 框架的等价. 利用 Noether 对称性方法寻找弱非线性动力学方程的近似守恒量不仅方便有效,而且具有较大的灵活性.  相似文献   

16.
多体动力学的几何积分方法研究进展   总被引:1,自引:0,他引:1  
动力系统的几何积分研究是近20年来工程计算领域非常活跃的方向.多体动力学方程(微分方程, 微分代数方程)是一类典型的动力系统,将其从Lagrange体系向Hamilton系统过渡,目的在于从欧氏几何过渡到辛几何形态, 将对偶变量引入到力学研究中,然后利用辛几何的数学框架对多体系统动力学方程进行数值计算,可以预知多体动力学系统的一些定性信息,并在数值离散时能保持这些定性性质特征,尤其在表示关键的物理意义时需要强调保持这些几何性质.简要介绍多体系统(无约束多刚体系统、完整约束多刚体系统和柔性多体系统)的Hamilton正则方程的建立和几何积分方法的构造,着重介绍了在多体动力学计算中非常有应用前景的高阶辛算法(合成辛算法、分裂合成辛算法和辛精细积分法)、多辛算法,以及广义Hamilton 系统与Lie 群积分方法等计算几何力学方法, 并对Lie群积分的投影方法、流形局部坐标法等方法进行了阐述.   相似文献   

17.
张毅 《力学学报》2020,52(6):1765-1773
自然界和工程技术领域存在大量的非线性问题,它们通常需要用非线性微分方程来描述. 守恒量在微分方程的求解、约化和定性分析方面发挥重要作用. 因此,研究非线性动力学方程的近似守恒量具有重要意义. 文章利用 Noether 对称性方法研究弱非线性动力学方程的近似守恒量. 首先,将弱非线性动力学方程化为一般完整系统的 Lagrange 方程,在 Lagrange 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 其次,将弱非线性动力学方程化为相空间中一般完整系统的 Hamilton 方程,在 Hamilton 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 再次,将弱非线性动力学方程化为广义 Birkhoff 方程,在 Birkhoff 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 最后,以著名的 van der Pol 方程,Duffing 方程以及弱非线性耦合振子为例,分析三个不同框架下弱非线性系统的 Noether 准对称性与近似 Noether 守恒量的计算. 结果表明:同一弱非线性动力学方程可以化为不同的一般完整系统或不同的广义 Birkhoff 系统;Hamilton 框架下的结果是 Birkhoff 框架的特例,而 Lagrange 框架下的结果与 Hamilton 框架的等价. 利用 Noether 对称性方法寻找弱非线性动力学方程的近似守恒量不仅方便有效,而且具有较大的灵活性.   相似文献   

18.
In this paper two different control strategies designed to alleviate the response of quasi partially integrable Hamiltonian systems subjected to stochastic excitation are proposed. First, by using the stochastic averaging method for quasi partially integrable Hamiltonian systems, an n-DOF controlled quasi partially integrable Hamiltonian system with stochastic excitation is converted into a set of partially averaged Itô stochastic differential equations. Then, the dynamical programming equation associated with the partially averaged Itô equations is formulated by applying the stochastic dynamical programming principle. In the first control strategy, the optimal control law is derived from the dynamical programming equation and the control constraints without solving the dynamical programming equation. In the second control strategy, the optimal control law is obtained by solving the dynamical programming equation. Finally, both the responses of controlled and uncontrolled systems are predicted through solving the Fokker-Plank-Kolmogorov equation associated with fully averaged Itô equations. An example is worked out to illustrate the application and effectiveness of the two proposed control strategies.  相似文献   

19.
We consider two cases of reducible Volterra and Levin–Nohel retarded equations with infinite delay. In these cases reducibility arises from the use of a special type of memory functions with an exponential behavior. We address global questions like the existence of Liapunov functions and, consequently, of attractors for the nonlinear systems generated by these equations as well as the attractors for the reduced systems. For the reducible Volterra equations we exhibit cases of nontrivial Hamiltonian behaviour and for the reducible Levin–Nohel equation we identify Hopf and saddle connection bifurcations.  相似文献   

20.
In this paper, the nonlinear dynamical behavior of two coupled pipes conveying pulsating fluid is studied. The connection between the two pipes is considered as a distributed linear spring. Based on this consideration, the equations of motion of the coupled two-pipe system are obtained. The two coupled nonlinear partial differential equations, discretized using the fourth- order Galerkin method, are solved by a fourth-order Runge-Kutta integration algorithm. Results show that the connection stiffness has a significant effect on the dynamical behavior of the coupled system. It is found that for some parameter values the motion types of the two pipes might be synchronous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号