首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
田怀香  王璋  许时婴 《色谱》2006,24(2):177-180
采用顶空固相微萃取法(HS-SPME)制备样品,利用气相色谱-质谱法(GC-MS)分离鉴定了金华火腿的挥发性风味物质。实验中筛选了固相微萃取纤维头,优化了固相微萃取的操作条件。用75 μm碳分子筛/聚二甲基硅氧烷(CAR-PDMS)纤维头,于60 ℃下对金华火腿样品顶空吸附40 min,于250 ℃下解吸2 min,采用GC-MS对解吸物进行分离鉴定。金华火腿样品的分析结果表明,其挥发性风味物质中含量较高的是醛、酸和酮类化合物,还有一些含硫或杂环化合物。  相似文献   

2.
郭方遒  黄兰芳  周邵云 《色谱》2007,25(1):43-47
采用顶空固相微萃取-气相色谱-质谱法(HS-SPME-GC-MS)分离鉴定了白术中的挥发性成分,并与采用传统的水蒸气蒸馏法(SD)提取的挥发性成分进行了比较。实验中筛选了固相微萃取纤维头,优化了SPME的操作条件。样品在70 ℃下平衡30 min后,用65 μm聚二甲基硅氧烷-二乙烯基苯(PDMS-DVB)纤维头对白术样品顶空吸附30 min,于250 ℃下解吸4 min, 然后采用GC-MS对解吸物进行分离鉴定;采用HS-SPME-GC-MS鉴定出41种组分,占总峰面积的90.81%;采用SD-GC-MS鉴定出31个组分,占总峰面积的88.19%,且采用SD所提取的组分基本上都被固相微萃取所提取。结果表明, HS-SPME可取代耗时的SD用于白术中挥发性物质的提取。  相似文献   

3.
该文以印尼产的燕窝为材料,使用固相微萃取(SPME)技术萃取燕窝中挥发性成分并以气相色谱-质谱(GC-MS)联用仪进行测定。考察了萃取头类型、萃取温度、萃取时间和解吸时间对固相微萃取(SPME)在燕窝挥发性成分测定中的影响。结果表明:以65μm聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头、在60℃下萃取60 min,解吸2 min的条件下,SPME/GC-MS技术可检出燕窝中挥发性成分醇、烃、醛、酯、醚类等化合物共82种。该方法具有操作简便、快速、重复性好和灵敏度高的特点,适用于燕窝中挥发性成分的测定。  相似文献   

4.
刘敬科  张爱霞  李少辉  赵巍  张玉宗  邢国胜 《色谱》2017,35(11):1184-1191
为全面了解小米黄酒风味成分的构成和气味特征,优化了85μm聚丙烯酸酯(PA)、100μm聚二甲基硅氧烷(PDMS)、75μm碳分子筛(CAR)/PDMS、50/30μm二乙烯基苯(DVB)/CAR/PDMS萃取头提取小米黄酒风味成分的条件,采用顶空固相微萃取(headspace solid phase microextraction,HS-SPME)-气相色谱-质谱法(GC-MS)对风味成分进行定性、定量分析,并计算气味活性值(odor active value,OAV),同时利用OAV分析风味成分的气味特征和气味强度。结果显示:不同萃取头的最优萃取条件为样品量8 mL、萃取时间40 min、萃取温度60℃、NaCl添加量1.5 g。小米黄酒风味成分由醇、酯、含苯化合物、烃、酸、醛、酮、烯、酚和杂环类化合物构成,醇为主要风味成分。通过OAV确定了苯乙醇、苯乙烯、2-甲基萘、1-甲基萘、苯甲醛、苯乙醛、2-甲氧基-苯酚为小米黄酒气味特征成分,苯基乙醇、苯乙醛对气味贡献最大。PA和PDMS萃取头分别对极性和非极性化合物具有较好的吸附效果,CAR/PDMS和DVB/CAR/PDMS萃取头对中等极性化合物具有较好的吸附效果。该研究全面了解了小米黄酒风味成分的构成,为其产品开发及品质控制提供理论了依据。  相似文献   

5.
采用顶空固相微萃取( HS-SPME)、索氏提取( SE)、超声辅助提取( UAE)、水蒸汽蒸馏法( SD)结合气相-质谱( GC-MS)联用技术分析蛇莓的挥发性组分。实验对HS-SPME各影响因素进行了优化,最终确定采用65μm聚二甲基硅氧烷-二乙烯基苯( PDMS-DVB)萃取头在90℃水浴50 min后插入250℃ GC 进样口解吸5 min,得到最佳提取效果。 HS-SPME, SD, SE和UAE方法分别得到47,32,16和16种挥发性组分,总数为66种,其中47种化合物为首次报道。实验结果表明,HS-SPME与SD得到多为萜类化合物,而SE与UAE得到的化合物中酸类分别占总成分61.44%与69.54%。  相似文献   

6.
优化了顶空-固相微萃取法(HS-SPME)提取沙棘挥发性成分的条件,并采用气相色谱-质谱联用技术(GC-MS)分别对HS-SPME法和水蒸气蒸馏法(SD)的提取物进行分析。结果显示,在萃取温度为70℃,萃取时间为50 min,解吸时间为7 min,平衡时间为20 min条件下,HS-SPME法鉴定出76种组分,占挥发性物质总量的90.19%,主要成分为酯类、醛类和酮类;而SD法提取物共鉴定出56种组分,占挥发性物质总量的91.98%,主要成分为酯类。2种方法共有组分为20种。两种方法提取的沙棘挥发油组分的种类及含量差异较大,HS-SPME法更适合沙棘挥发性组分的快速检测。  相似文献   

7.
采用顶空固相微萃取(HS-SPME)与气相色谱/质谱(GC/MS)联用方法对艾叶中易挥发性成分进行了分析,并通过单因素和正交试验对影响HS-SPME的条件进行优化,确定了HS-SPME的最优参数为:50/30μm DVB/CAR/PDMS固相微萃取头、样品用量0.8g、萃取温度75℃、萃取时间50min、平衡时间30min、解吸4min。经GC/MS分析,共检出196种化合物,利用质谱解析结合保留指数定性确定结构132种,占易挥发性成分总量的94.01%。其中主要易挥发性成分是3-氨基吡唑、桉油精、β-杜松烯、顺-β-松油醇、3-甲基-2-丁烯酸-4-硝基苯基酯、3,6,6-三甲基-1,5-庚二烯-4-醇、6-甲基-3-(1-异丙基)-2-环己烯-1-酮、3-甲基-2-丁烯酸环丁酯。本文结果为艾叶易挥发性成分及其开发利用提供了一定的理论依据。  相似文献   

8.
曾栋  陈波  姚守拙 《分析化学》2005,33(4):491-494
采用顶空固相微萃取与气相色谱-质谱联用技术检测分析干柴胡药材中挥发性成分,选用聚丙烯酸酯涂层,就萃取时间、温度、体积、样品量、预热时间及脱附时间等条件进行了优化,结果表明,30mL萃取瓶里0.5g样品90℃温度下预热40min后,以85μmPA涂层顶空萃取50min,于250℃脱附5min,测得88个峰,鉴定26种化合物成分。方法所得结果与传统提取方法(蒸馏提取法)比较,相对含量较高的成分一致,方法重现性理想,可应用于柴胡药材挥发性物质的快速分析。  相似文献   

9.
采用顶空固相微萃取-气相色谱质谱法(HS-SPME/GC-MS)定性定量分析广藿香药材中的挥发性成分.以百秋里醇的峰面积为指标,确定HS-SPME最佳的实验条件为:160目药材粉末用无水 Na2SO4稀释10倍,称取30 mg于15 mL萃取瓶中,以250 r/min速度搅拌预热(80 ℃) 40 min,插入65 μm聚二甲基硅烷-二乙烯(PDMS-DVB)涂层的纤维头,在相同搅拌速度下80 ℃萃取40 min,纤维头进入GC进样口在250 ℃下解吸100 s.GC色谱条件:色谱柱为DB-5MS柱;载气流速为1 mL/min;柱温的起始温度为90 ℃,以0.8 ℃/min升至110 ℃,保持5 min;1.0 ℃/min升至134 ℃,保持5 min;最后以5.0 ℃/min升至143 ℃,保持10 min.结果:百秋里醇的平均回收率为91.8%,RSD为3.0%.运用本方法对10份不同产地广藿香中百秋里醇的含量进行测定,并以其为参比对照,测定了广藿香中其它主要挥发性成分的含量.  相似文献   

10.
对两种采样方法——静态顶空法(SHS)和顶空固相微萃取法(HS-SPME)-用于气相色谱-质谱法(GC-MS)检测食品用塑料包装材料中15种挥发性有机化合物(VOC′s)残留量的适用性作了比较研究。SHS中选用的提取温度和时间依次为100℃和20 min。HS-SPME中用50/30μm DVB/CAR/PDMS萃取头,在室温萃取20min。结果表明:用HS-SPME采集挥发物时,测定结果的灵敏度远高于SHS,虽然采用两种方法所得测定值的RSD值相比较,SHS优于HSSPME,但考虑到食品用塑料包装材料中VOC′s的阈值很低,用HS-SPME与GC-MS相结合更适当。  相似文献   

11.
A dynamic headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to ion trap mass spectrometry (GC-(IT)MS) method was developed and applied for the qualitative determination of the volatile compounds present in commercial whisky samples which alcoholic content was previously adjusted to 13% (v/v). Headspace SPME experimental conditions, such as fibre coating, extraction temperature and extraction time, were optimized in order to improve the extraction process. Five different SPME fibres were used in this study, namely, poly(dimethylsiloxane) (PDMS), poly(acrylate) (PA), Carboxen-poly(dimethylsiloxane) (CAR/PDMS), Carbowax-divinylbenzene (CW/DVB) and Carboxen-poly(dimethylsiloxane)-divinylbenzene (CAR/PDMS/DVB). The best results were obtained using a 75 microm CAR/PDMS fibre during headspace extraction at 40 degrees C with stirring at 750 rpm for 60 min, after saturating the samples with salt. The optimised methodology was then applied to investigate the volatile composition profile of three Scotch whisky samples--Black Label, Ballantines and Highland Clan. Approximately seventy volatile compounds were identified in the these samples, pertaining at several chemical groups, mainly fatty acids ethyl esters, higher alcohols, fatty acids, carbonyl compounds, monoterpenols, C13 norisoprenoids and some volatile phenols. The ethyl esters form an essential group of aroma components in whisky, to which they confer a pleasant aroma, with "fruity" odours. Qualitatively, the isoamyl acetate, with "banana" aroma, was the most interesting. Quantitatively, significant components are ethyl esters of caprilic, capric and lauric acids. The highest concentration of fatty acids, were observed for caprilic and capric acids. From the higher alcohols the fusel oils (3-methylbutan-1-ol and 2.phenyletanol) are the most important ones.  相似文献   

12.
Pontes M  Marques JC  Câmara JS 《Talanta》2007,74(1):91-103
The volatile composition from four types of multifloral Portuguese (produced in Madeira Island) honeys was investigated by a suitable analytical procedure based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry detection (GC-qMS). The performance of five commercially available SPME fibres: 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); 75 μm carboxen/polydimethylsiloxane, CAR/PDMS, and 65 μm carbowax/divinylbenzene, CW/DVB; were evaluated and compared. The highest amounts of extract, in terms of the maximum signal obtained for the total volatile composition, were obtained with a DVB/CAR/PDMS coating fibre at 60 °C during an extraction time of 40 min with a constant stirring at 750 rpm, after saturating the sample with NaCl (30%). Using this methodology more than one hundred volatile compounds, belonging to different biosynthetic pathways were identified, including monoterpenols, C13-norisoprenoids, sesquiterpenes, higher alcohols, ethyl esters and fatty acids. The main components of the HS-SPME samples of honey were in average ethanol, hotrienol, benzeneacetaldehyde, furfural, trans-linalool oxide and 1,3-dihydroxy-2-propanone.  相似文献   

13.
Extraction of dry cured ham volatile compounds by solid-phase microextraction (SPME) was optimized. Different fiber coatings (carboxen/polydimethylsiloxane (CAR/PDMS), divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS), polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB)), times of extraction (15, 30, 60 min) and sample preparation (ground samples and homogenates with NaCl saturated solution) were assayed. CAR/PDMS and DVB/CAR/PDMS fiber coatings extracted more than 100 volatile compounds and showed the highest area counts for most volatile compounds. CAR/PDMS coating extracted better those compounds whose Kovats index (KI) was lower than 980 (on average) and DVB/CAR/PDMS those with higher KI. Fifteen minutes of extraction provided a volatile compound profile with lower area counts for most compounds and qualitatively different to that obtained with 30 and 60 min of extraction. Homogenates gave a different profile compared to ground samples, with lower total counts for most compounds but higher proportion of aldehydes, and presence of several compounds not found in ground samples.  相似文献   

14.
The volatile components of yak butter were isolated by solvent-assisted flavour evaporation (SAFE), simultaneous distillation extraction (SDE; dichloromethane and diethyl ether as solvent, respectively) and headspace solid-phase microextraction (HS-SPME; CAR/PDMS, PDMS/DVB and DVB/CAR/PDMS fibre extraction, respectively) and were analysed by GC/MS. A total of 83 volatile components were identified under six different conditions, including 28 acids, 12 esters, 11 ketones, 10 lactones, 10 alcohols, 4 other compounds, 2 aldehydes, 2 unsaturated aldehydes, 1 furan, 1 sulphur-containing compound, 1 unsaturated alcohol and 1 unsatruated ketone. Among them, 51 were identified by SAFE, 58 by SDE (45 with dichloromethane as solvent and 41 with diethyl ether as solvent) and 40 by HS-SPME (26 with CAR/PDMS; 26 with PDMS/DVB and 32 with DVB/CAR/PDMS). Three pretreatment methods were compared to show that the volatile components obtained using different methods varied greatly, both in terms of categories and in content. Therefore, a multi-pretreatment method should be adopted, together with GC/MS. A total of 25 aroma-active compounds were detected by gas chromatography-olfactometry, among which 20 aroma-active compounds were found by SDE (14 with dichloromethane as solvent and 14 with diethyl ether as solvent) and 17 by SAFE.  相似文献   

15.
In the present study, a simple and sensitive methodology based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography with quadrupole mass detection (GC-qMSD), was developed and optimized for the determination of volatile (VOCs) and semi-volatile (SVOCs) compounds from different alcoholic beverages: wine, beer and whisky. Key experimental factors influencing the equilibrium of the VOCs and SVOCs between the sample and the SPME fibre, as the type of fibre coating, extraction time and temperature, sample stirring and ionic strength, were optimized. The performance of five commercially available SPME fibres was evaluated and compared, namely polydimethylsiloxane (PDMS, 100 μm); polyacrylate (PA, 85 μm); polydimethylsiloxane/divinylbenzene (PDMS/DVB, 65 μm); carboxen™/polydimethylsiloxane (CAR/PDMS, 75 μm) and the divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR/PDMS, 50/30 μm) (StableFlex).An objective comparison among different alcoholic beverages has been established in terms of qualitative and semi-quantitative differences on volatile and semi-volatile compounds. These compounds belong to several chemical families, including higher alcohols, ethyl esters, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, furanic compounds, terpenoids, C13-norisoprenoids and volatile phenols. The optimized extraction conditions and GC-qMSD, lead to the successful identification of 44 compounds in white wines, 64 in beers and 104 in whiskys. Some of these compounds were found in all of the examined beverage samples.The main components of the HS-SPME found in white wines were ethyl octanoate (46.9%), ethyl decanoate (30.3%), ethyl 9-decenoate (10.7%), ethyl hexanoate (3.1%), and isoamyl octanoate (2.7%). As for beers, the major compounds were isoamyl alcohol (11.5%), ethyl octanoate (9.1%), isoamyl acetate (8.2%), 2-ethyl-1-hexanol (5.9%), and octanoic acid (5.5%). Ethyl decanoate (58.0%), ethyl octanoate (15.1%), ethyl dodecanoate (13.9%) followed by 3-methyl-1-butanol (1.8%) and isoamyl acetate (1.4%) were found to be the major VOCs in whisky samples.  相似文献   

16.
Headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography with ion trap mass spectrometric detection and with atomic emission detection (GC-AED) was employed to identify possible odor-impact volatile organic compounds in cupuassu (Theobroma grandiflorum Spreng) liquor, as well as to quantify alkylpyrazines present in these samples. SPME fibers coated with 100 microm polydimethylsiloxane (PDMS), 65 microm PDMS-divinylbenzene (DVB) and 75 microm Carboxen (CAR)-PDMS were tested, the later being chosen for the optimized extraction procedure. The principal compounds found in the sample headspace were 3-methylbutanal, dimethylsulfide, dimethyldisulfide, beta-linalool and several alkylpyrazines (notably tetramethylpyrazine). The procedure for quantitation of the alkylpyrazines, using GC-AED for their separation and detection, allowed the detection of microg g(-1) levels of the analytes in the samples, with acceptable precision (R.S.D. less than 10%).  相似文献   

17.
In headspace (HS) analysis, a fumigant is released from a commodity into a gas-tight container by grinding, heating, or microwaves. A new technique uses HS-solid-phase microextraction (SPME) for additional preconcentration of fumigant. HS-SPME was tested for detection of phosphine (PH3), chosen for examination because of its wide use on stored commodities. PH3 was applied to 50 g wheat in separate 250 mL sealed flasks, which were equipped either with a septum for conventional HS analysis or with one of four HS-SPME fibers [100 microm polydimethylsiloxane (PDMS), 85 microm carboxen (CAR)/PDMS, 75 microm CAR/PDMS, and 65 pm PDMS/divinylbenzene (DVB)]. The wheat was heated at 45 degrees C for 20 min. In conventional HS analysis, a gaseous aliquot (80 pL) was taken from the HS and injected into the GC instrument. In the HS-SPME procedure, the fiber was removed from the HS and exposed in the heated injection port of the GC instrument. In all cases, PH3 was determined under the same chromatographic conditions with a GC pulsed flame photometric detector. In a comparison of the efficacy of the fibers, the bipolar fibers (CAR/PDMS and PDMS/DVB) contained more PH3 than the aliquot in the conventional HS analysis; larger size bipolar fibers extracted PH3 more efficiently than smaller fibers (e.g., 85 > 75 > 65 microm). The nonpolar fiber (PDMS) contained no PH3. Four fortification levels of PH3 on wheat were tested: 0.01, 0.05, 0.1, and 0.3 microg/g. The response of each bipolar fiber increased with the fortification levels, but the conventional HS analysis detected no fumigant at the lowest fortification level of 0.01 mg/g. Under the conditions of the validation study, the LOD was in the range of 0.005-0.01 ng PH3/g wheat.  相似文献   

18.
J.J. Rios  A. Morales 《Talanta》2010,80(5):2076-180
A solvent-free analytical approach based on headspace solid-phase microextraction (SPME) of oil matrices heated at high temperatures coupled to gas chromatography with mass spectrometry detector (GC-ion trap) has been developed for the determination of phthalic acid esters (PAEs) in oil matrices without sample manipulation. For this study, three fibers, i.e., 85 μm-polyacrylate (PA), 50/30 μm-divinylbenzene-carboxen-polydimethylsiloxane (DVB/CAR/PDMS) and 100 μm-polydimethylsiloxane (PDMS) were tested. Variables affecting the SPME headspace composition such as incubation sample temperature, sample incubation time and fiber exposition time were optimized. The optimal values found were 250 °C for sample incubation temperature and 30 min for incubation and extraction time. PA fiber was not suitable for the lightest polar phthalates which showed poor extraction and repeatability values. PDMS fiber had very poor response for some of the heavier and non-polar phthalates, whereas DVB/CAR/PDMS fiber showed the best response and repeatability values for the majority of the phthalates studied. The main benefit of the analytical method proposed is the absence of sample manipulation and hence avoidance of possible contamination coming from glassware, environment, solvents and samples.  相似文献   

19.
Trans-2-nonenal is an aldehyde contributing to an unpleasant off-flavor and odor of rancid butter in stored beer. The automated solid-phase microextraction technique (SPME) coupled with gas chromatography (GC) and solid-phase dynamic extraction (SPDE) coupled with gas chromatography were optimized and introduced to determine trans-2-nonenal in barley, malt and beer. Five types of SPME fibers coated with different stationary phases (100 μm PDMS, 65 μm PDMS/DVB, 85 μm CAR/PDMS, 50/30 μm DVB/CAR/PDMS, 85 μm PA) and two needles (PDMS, PDMS/AC) were compared and tested for their efficiencies in the headspace (HS) SPME and SPDE determination of trans-2-nonenal in barley, malt and beer. The highest extraction efficiency of HS-SPME was achieved with the PDMS/DVB fiber, and addition of 1.5 g of NaCl, extraction time was 20 min at 60 °C. The highest extraction efficiency of HS-SPDE was obtained with the PDMS needle, 15 extraction strokes at 60 °C and addition of 1.5 g of NaCl. Trans-2-nonenal was identified with the method of HS-SPME coupled gas chromatography-mass spectrometry (GC–MS); the samples were analyzed using the HS-SPME-GC-coupled gas chromatography-flame ionization detector (GC-FID) technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号