首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Biofuels, such as bio‐ethanol, bio‐butanol, and biodiesel, are of increasing interest as alternatives to petroleum‐based transportation fuels because they offer the long‐term promise of fuel‐source regenerability and reduced climatic impact. Current discussions emphasize the processes to make such alternative fuels and fuel additives, the compatibility of these substances with current fuel‐delivery infrastructure and engine performance, and the competition between biofuel and food production. However, the combustion chemistry of the compounds that constitute typical biofuels, including alcohols, ethers, and esters, has not received similar public attention. Herein we highlight some characteristic aspects of the chemical pathways in the combustion of prototypical representatives of potential biofuels. The discussion focuses on the decomposition and oxidation mechanisms and the formation of undesired, harmful, or toxic emissions, with an emphasis on transportation fuels. New insights into the vastly diverse and complex chemical reaction networks of biofuel combustion are enabled by recent experimental investigations and complementary combustion modeling. Understanding key elements of this chemistry is an important step towards the intelligent selection of next‐generation alternative fuels.  相似文献   

2.
Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations.  相似文献   

3.
Sustainably produced biofuels, especially when they are derived from lignocellulosic biomass, are being discussed intensively for future ground transportation. Traditionally, research activities focus on the synthesis process, while leaving their combustion properties to be evaluated by a different community. This Review adopts an integrative view of engine combustion and fuel synthesis, focusing on chemical aspects as the common denominator. It will be demonstrated that a fundamental understanding of the combustion process can be instrumental to derive design criteria for the molecular structure of fuel candidates, which can then be targets for the analysis of synthetic pathways and the development of catalytic production routes. With such an integrative approach to fuel design, it will be possible to improve systematically the entire system, spanning biomass feedstock, conversion process, fuel, engine, and pollutants with a view to improve the carbon footprint, increase efficiency, and reduce emissions.  相似文献   

4.
Sulfur impact on diesel emission control- A review   总被引:3,自引:0,他引:3  
The effect of sulfur on diesel emission control is reviewed in this paper. Diesel exhaust differs from that of petrol engine exhaust in two major characteristics. Firstly, diesel exhaust contains a far higher amount of particulate matter, and secondly, the exhaust is far leaner, that is, far more oxidizing than a typical exhaust from petrol engines. Under these conditions, the conventional three-way catalysts are not effective in reducing NOx . Emission from diesel engines is a complex phenomenon. The composition, the properties and the amount of these emissions depend on strictly technical parameters such as engine design and engine operation characteristics and on fuel and lube oil composition. Diesel fuel contains a small amount of sulfur which has an adverse effect even on the raw particulate emissions. The investigations on the effect of sulfur on hydrocarbons, CO and NOx abatement in diesel exhaust gas is reviewed together with the newest technologies to avoid catalyst deactivation by unwanted SO2 reactions.  相似文献   

5.
Moisture content (MC) of green biomass or raw biomass materials (wood, bark, plants, etc.) commonly exceeds 50 mass % (wet basis). The maximum possible MC of biomass fuel for big scale combustion (e.g. fluidized bed combustion with low external heat losses) is approximately 60–65 mass %. Higher biomass MC generally causes operational problems of biomass combustors, lower stability of burning and higher CO and VOC emissions. Gasification of biomass with higher MC produces fuel gas of lower effective heating values and higher tar concentrations. In this review, various technological schemes for wood drying in combination with combustion/gasification with the assessment of factors for possible minimization of emissions of organics from the drying processes are compared. The simple direct flue gas biomass drying technologies lead to exhaust drying gases containing high VOC emissions (terpenes, alcohols, organic acids, etc.). VOC emissions depend on the drying temperature, residence time and final MC of the dried biomass. Indirect biomass drying has an advantage in the possibility of reaching very low emissions of organic compounds from the drying process. Exhaust drying gases can be simply destroyed as a part of the total combustion air (gas) in a combustion chamber or a gasifier. Liquid, condensed effluents have to be treated properly because they have relatively high content of organic compounds, some of them accompanied by odor. Drying of biomass with superheated steam offers more uniform drying of both small and bigger particles and shorter periods of higher temperatures of the dried biomass, particularly if drying to the final MC below 15 mass % is required. In practical modern drying technologies, biomass (mainly wood) is dried in recirculated gas of relatively high humidity (approaching saturation) and the period of constant rate drying is longer. Drying of moist wood material (saw dust, chips, etc.) is required in wood pellet production. Emissions of organics in drying depend on biomass properties, content of resins, storing time and on operational aspects of the drying process: drying temperature, drying medium, final MC, residence time, and particle size distribution of the dried biomass (wood). Integration of biomass drying with combustion/gasification processes includes the choice of the drying medium (flue gas, air, superheated steam). Properties of the drying media and operational parameters are strongly dependent on local conditions, fuel input of the combustion/gasification unit, cleaning of the exhaust drying media (gas, steam, wastewater), and on environmental factors and requirements.  相似文献   

6.
乙醇/柴油混合燃料的相溶性及对发动机性能影响的研究   总被引:2,自引:0,他引:2  
利用助溶剂解决乙醇/柴油的相溶性问题,讨论了混合燃料中乙醇和助溶剂添加量对相溶性的影响,并使用助溶剂体积分数为1.5%、乙醇体积分数分别为5%、10%、15%的混合燃料及 20号纯柴油(分别表示为E5、E10、E15和 E0)在发动机台架上进行了性能和排放试验。研究结果表明,柴油的烃组成是决定相分离温度的决定性因素;对全部测试油品,乙醇体积分数在10%、助溶剂添加体积分数为1.5%时,混合燃料相溶性较好。台架试验显示,随着混合燃料中乙醇掺烧比例的增加,发动机的燃油消耗率逐渐增加,而发动机的额定功率和最大扭矩逐渐降低,但最大扭矩降低的幅度较小;此外,随着乙醇掺烧比例的增加,CO比排放量减少,HC、NOx和PM的比排放量逐渐增加,但NOx和PM的比排放量增加幅度不大。10%体积分数的乙醇添加量是乙醇/柴油的最佳掺烧比。  相似文献   

7.

This paper demonstrates the study of performance, combustion and emission characteristics of a common rail diesel injection (CRDI) engine with the influence of exhaust gas recirculation (EGR) (5, 15 and 25%) at various fuel injection pressures (400, 500 and 600 bar) under the effective load conditions (0, 25, 50, 75 and 100%). The experiments were carried out in a controlled manner using the CRDI engine fuelled with 80% (D80) diesel (98% purity) blended with 20% (B20) tallow biodiesel. The engine has been operated at a rated speed of 1500 rpm on all load conditions, fuel injection timings of 10°, 15° and 20° bTDC, fuel injection pressures of 400, 500 and 600 bar, respectively. Combustion-influenced performance characteristics such as variation of in-cylinder pressure and net heat release rate in J deg?1 are also studied with the above operating conditions. It was observed that the usage of 20% biofuel blend shows considerable improvement in combustion, and it further enhances with an increase in the injection pressures. Besides, EGR (up to 25%) reduced significant pollutants at higher operating pressures (600 bar) at higher load conditions. It was also observed that CO2 emission increased with increase in the % EGR with an increase in the load conditions. However, for CO emission increased up to 50% load condition and subsequently tends to decrease due to improved combustion at higher load; hence higher temperature. NOx, smoke opacity continue to increase with the increase in pressure and the percentage increase in EGR due to its attainment of adiabatic temperature, which leads to the pathway for the Zeldovich mechanism. The present work shows light on the usage of tallow methyl ester produced from the wastes in the tannery industry as alternate biofuel operating the CRDI engines without compromising its combustion and emission characteristics to deliver the same power as petro-diesel.

  相似文献   

8.
This research explores the opportunities of combining energy production with a biochar soil management using a pyrolysis process. Real-world issues justify this approach: the need to provide sustainable production systems that minimize on- and off-site pollution and soil degradation; and the demand for solutions to global warming. The proposed technology is a pyrolysis process that yields gas, bio-oil and biochar. The composition and heating value of the gas makes it suitable for use as a fuel. The bio-oil obtained may be evaluated as an environmentally friendly green biofuel candidate. The biochar product is carbon-rich and a potential solid biofuel. Other ways it might be used as a C and N source in soil amendment. This is a key to securing environmental benefits: the production of a biochar which can be applied to soil.  相似文献   

9.
A conventional diesel burner has arisen several shortcomings, such a large supply of air for a stoichiometric combustion, and a long heat-up time to reach the light-off temperature of catalyst in a diesel after-treatment system. This study shows a promising potential of using a plasma reformer for staged diesel combustion with minimized air and fuel consumption, and increased the flame stability with low NOx emission. A working principle of a plasma fuel reformer for staged combustion is explained in detail by both visualizing the plasma-assisted flame and analyzing the gas products. The concentrations of H2, CO, NOx and the unburned total hydrocarbons were measured by gas chromatography and a commercial gas analyzer. Considering the operating condition of diesel exhaust gas is too harsh to maintain a stable diesel flame with a conventional diesel burner, plasma fuel reformer has distinctive advantages in stable flame anchoring under the condition of low oxygen concentration and fast flow speed. The re-ignition and stable flame anchoring by entrapment of oxygen in exhaust gas is mainly attributed to the low ignition energy and high diffusion velocity of hydrogen molecule. From an economic point of view, plasma reformer is also the only technology which can use only 1/3–1/8 of the air required for the stoichiometric burning of a conventional diesel burner. A conventional burner was simulated and analyzed to consume up to 30 % more fuel compared to the plasma reformer with the staged combustion to get the same level of temperature elevation in a real diesel engine scale.  相似文献   

10.
F-T柴油在直喷式柴油机中燃烧与排放特性的研究   总被引:7,自引:1,他引:6  
煤通过Fischer-Tropsch (F-T)合成可得到十六烷值高、硫和芳香烃质量分数极低的F-T柴油。研究分析了未作改动的单缸直喷式柴油机燃用F-T柴油时的燃烧和排放特性。结果表明,与燃用0号柴油相比,燃用F-T柴油时的滞燃期平均缩短18.7%,预混燃烧放热峰值降低26.8%,扩散燃烧放热峰值较高,燃烧持续期相当。燃用F-T柴油时的最高燃烧压力略低,最大压力升高率显著下降,机械损失和燃烧噪音较小,燃油消耗率和热效率都得到显著改善。燃用F-T柴油可同时降低CO、HC、NOx和炭烟排放,其中NOx和炭烟分别平均降低16.7%和40.3%。研究表明,F-T柴油是柴油机良好的清洁代用燃料。  相似文献   

11.
Water-in-diesel (W/D) emulsion fuels were prepared through an ultrasonic processor by using high energy emulsification method. Accordingly, the physical and chemical properties were analyzed. A decrease in viscosity was found in the emulsion fuel in contrast to the neat diesel which signifies the enhanced fluidity of the fuel. The emulsion fuel was then used to carry combustion tests in an internal combustion engine. A decrease in exhaust temperature was observed when a high surfactant to water ratio was used, which lead to minimal heat loss. As water is emulsified with diesel, effectiveness of combustion is improved rather than neat diesel fuel. It was also explored that the addition of water-in-diesel is influential in terms of reduction in exhaust gas emission such as carbon dioxide, carbon monoxide, ammonia from the internal combustion engine. Therefore, this type of emulsion fuel would be a useful contribution in the fuel economy, but also in making it environmentally friendly since diesel fuel is now considered one of the leading fuels causing ecological contamination.  相似文献   

12.

As a clean and sustainable energy source, hydrogen is widely considered as an engine fuel by top researchers. In view of the fact that the uneven fuel mixture of diesel fuel deteriorated the combustion and emissions process, it is expected to adopt diesel and hydrogen dual-fuel combustion technology to optimize combustion and heat release of diesel engine. In this study, experiments are carried out on a diesel engine and the combustion characteristics of the engine with different hydrogen ratios (RH) are compared. It has been found that hydrogen addition is conducive to accelerate the heat release rate and improve the thermal efficiency. Specifically, compared with pure diesel conditions, the peak pressure increased by 7.7% and the cumulative heat release rate increased by 3.7% under the condition of RH of 20%. Moreover, although the effect on the ignition delay period is not clear, the higher RH brings about earlier heat release center and more cumulative heat release while enhancing the heat release of premixed combustion reducing the diffusion combustion and post-combustion.

  相似文献   

13.
The Brazilian government has presented a biofuel program, which aims the addition of 2% of biofuel in fossil diesel in 2008 and 5% up to 2013. Thus, the knowledge of heat of combustion of biofuel/diesel blends is necessary. The biodiesel was produced by transesterification of soybean oil with a yield of 87%. The diesel-like was obtained by pyrolysis of soybean oil. This biofuel presented all parameters according to ANP. The obtained heats of combustion were 41.36 ± 0.17; 38.70 ± 0.16; and 36.71 ± 0.17 MJ/kg for diesel, diesel-like and biodiesel, respectively. The results show that the heats of combustion of biofuels are approximately 17% smaller than fossil diesel. The obtained data also show that the heats of combustion depend on the methodology used for the biofuel production. Addition of biofuels to traditional diesel fuel results in a linear decreasing of the heat of combustion with the amount of the alternative fuel added to the diesel.  相似文献   

14.
This article draws a bow from the fundamentals of the flame chemistry to combustion in engines. Aspects of radical chemistry, pollutant formation and combustion are highlighted. Concepts of current and future internal combustion engines are presented. A main focus lies on pollutant formation and reduction (CO2, CO, NOx, HC and soot). Finally, a vision of the future role of the internal combustion engine with respect to fuel cell and electrical engine is outlined.  相似文献   

15.
The reactivities of engine-out exhaust hydrocarbon (HC) emissions in photochemical smog formation have been determined for three fuels (isooctane, an aromatic blend, and a gasoline) in a single-cylinder, spark-ignited engine. High resolution capillary GC was used to determine the mole fractions of the exhaust hydrocarbon species. Temperature programmed chromatography on a single capillary column was sufficient to separate the major exhaust species. A library of approximately 160 hydrocarbon species was used to identify typically 90–95 % of the HC species present. GC-MS was used selectively to verify peak assignments. The effect of engine operating parameters (fuel-to-air ratio, spark timing, and speed) on reactivity was examined. Engine operating parameters affect both total emissions [g/mile] and the specific atmospheric reactivity [g ozone/g HC emissions] of these emissions. Changing the operating parameters to control total emissions may not be as effective as expected in controlling the total reactivity [g ozone/mile] of the emissions because the specific reactivity can also change simultaneously. Effects of changes in operating parameters differ significantly as the type of fuel is varied. The ability to measure exhaust hydrocarbon species emissions accurately and quickly will increase in importance as reactivity-based emissions standards come into widespread use.  相似文献   

16.
Hydrogen for road transportation : achievements and developments. At the beginning of this millenium, hydrogen appears as a potential energy carrier for the future. Thus, it could serve as a storage medium for renewable energy forms, which should play an increasing part in the world energy supply. In a closer future, hydrogen could also become a fuel for prospective fuel-cell and internal-combustion vehicles. We present here an inventory of the various technologies related to the use of hydrogen in road transportation : propulsion type (fuel cell and electric motor, or internal combustion engine), hydrogen production, on-board storage, infrastructure. Safety, standardization and regulation aspects will also be addressed. Presently, the majority of hydrogen buses are equipped with polymer membrane fuel cells (PEMFC), directly supplied with hydrogen from pressurized vessels (300 bars). On the other hand, car manufacturers are developing various types of experimental vehicles : internal-combustion engine cars with liquid hydrogen storage, fuel cell (PEMFC) cars with storage of hydrogen (liquid, gaseous, hydride) or of methanol. The type of required infrastructured will depend on the type of fuel chosen by the car makers and on the requirements of the oil companies. Several hydrogen supply stations, of different technologies, have already been set up. They deliver gaseous or liquid hydrogen produced by reforming of natural gas or by electrolysis. The building of a hydrogen-based fueling system requires the development of specific means of production, transportation, storage and delivery. Public acceptance will have to be won by guaranteeing safety, reliability, performance and competitivity. Presently, research and development work is mainly carried out on : on-board storage of hydrogen ; on-board systems for the production of hydrogen from methanol and petrol ; standardization and regulation.  相似文献   

17.
Ethanol     
Ethanol can be directly blended with gasoline, reacted with isobutylene to form the oxygenated fuel additive ethyl tert-butyl ether (ETBE), or burned directly as a neat fuel. Blends of either ethanol or ETBE with gasoline force engines set for gasoline to run lean and can substantially reduce carbon monoxide emissions. ETBE also lowers the overall vapor pressure, thereby cutting back on smog-forming emissions. Neat ethanol further reduces smog formation since it has a low volatility, the photochemical reactivity of ethanol and its combustion products is low, and low levels of smog producing compounds are formed by ethanol combustion. Neat ethanol also offers good engine performance owing to its high heat of vaporization, high octane, and low flame temperature. Fermentation stoichiometry reveals that many feedstocks are expensive for fuels production even considering coproduct credits and ignoring conversion costs, whereas lignocellulosic feedstocks cost much less than their value. Furthermore, the quantities of lignocellulosics are projected to be ample even for neat ethanol production. Release of carbon dioxide during fermentation concentrates almost all the heat of combustion from the solid carbohydrate portion in liquid ethanol. Since the carbon dioxide released during production and use of ethanol is recycled during growth of biomass, ethanol utilization doesn’t contribute to the accumulation of carbon dioxide in the atmosphere and possible global warming.  相似文献   

18.
Two-stroke mopeds are a popular and convenient mean of transport in particular in the highly populated cities. These vehicles can emit potentially toxic gaseous and aerosol pollutants due to their engine technology. The legislative measurements of moped emissions are based on offline methods; however, the online characterization of gas and particulate phases offers great possibilities to understand aerosol formation mechanism and to adapt future emission standards. The purpose of this work was to study the emission behavior of two mopeds complying with different European emission standards (EURO-1 and EURO-2). A sophisticated set of online analyzers was applied to simultaneously monitor the gas phase and particulate phase of exhaust on a real time basis. The gaseous emission was analyzed with a high resolution Fourier transform infrared spectrometer (FTIR; nitrogen species) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-ToF-MS; polycyclic aromatic hydrocarbons: PAH), whereas the particulate phase was chemically characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS; organic, nitrate and chloride aerosol) and a multiangle absorption photometer (MAAP; black carbon). The physical characterization of the aerosol was carried out with a condensation particle counter (CPC; particle number concentration) and a fast mobility particle sizer (FMPS; size distribution in real time). In order to extract underlying correlation between gas and solid emissions, principal component analysis was applied to the comprehensive online dataset. Multivariate analysis highlighted the considerable effect of the exhaust temperature on the particles and heavy PAH emissions. The results showed that the after-treatment used to comply with the latest EURO-2 emission standard may be responsible for the production of more potentially harmful particles compared to the EURO-1 moped emissions.  相似文献   

19.
Although the compression ignition engines are a significant source of power, their detrimental emissions create considerable problems to the environment as well as to humans. The objective of the present experimental investigation is to examine the effects of the magnetic nanofluid fuels on combustion performance characteristics and exhaust emissions. In this regard, the Fe3O4 nanoparticles dispersed in the diesel fuel with the nanoparticle concentrations of 0.4 and 0.8 vol% were employed for combustion in a single-cylinder, direct-injection diesel engine. After a series of experiments, it was demonstrated that the nanoparticle additives, even at very low concentrations, have considerable influence in diesel engine characteristics. Furthermore, the results indicated that the nanofluid fuel with nanoparticle concentration of 0.4 vol% shows better combustion characteristics in comparison with that of 0.8 vol%. Based on the experimental results, NO x and SO2 emissions dramatically reduce, while CO emissions and smoke opacity noticeably increase with increasing the dosing level of nanoparticles.  相似文献   

20.
Biodiesel is biodegradable and nontoxic, and it significantly reduces toxic and other emissions when burned as a fuel. The advantages of biodiesel as diesel fuel are its portability, ready availability, renewability, higher combustion efficiency, non-toxicity, higher flash point, and lower sulfur and aromatic content, higher cetane number, and higher biodegradability. The major disadvantages of biodiesel are its higher viscosity, lower energy content, higher cloud point and pour point, higher nitrogen oxide (NOx) emissions, lower engine speed and power, injector coking, engine compatibility, high price, and greater engine wear. The technical disadvantages of biodiesel/fossil diesel blends include problems with fuel freezing in cold weather, reduced energy density, and degradation of fuel under storage for prolonged periods. The sources of biodiesel are vegetable oils and fats. The direct use of vegetable oils and/or oil blends is generally considered to be unsatisfactory and impractical for both direct injection and indirect type diesel engines because of their high viscosities and low volatilities injector coking and trumpet formation on the injectors, higher level of carbon deposits, oil ring sticking, and thickening and gelling of the engine lubricant oil, acid composition. Biodiesel is obtained by transesterifying triglycerides with methanol. A popular variation of the batch transesterification process which needs high alcohol/acid ratio (several separation problems and high corrosivity and toxicity) is the use of continuous stirred tank reactors in series. This continuous process is heterogeneous and is based on reactive distillation. The key factor is the selection of the right and effective solid catalyst which leads to reduction of energy consumption and investments at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号