首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Brazilian government has presented a biofuel program, which aims the addition of 2% of biofuel in fossil diesel in 2008 and 5% up to 2013. Thus, the knowledge of heat of combustion of biofuel/diesel blends is necessary. The biodiesel was produced by transesterification of soybean oil with a yield of 87%. The diesel-like was obtained by pyrolysis of soybean oil. This biofuel presented all parameters according to ANP. The obtained heats of combustion were 41.36 ± 0.17; 38.70 ± 0.16; and 36.71 ± 0.17 MJ/kg for diesel, diesel-like and biodiesel, respectively. The results show that the heats of combustion of biofuels are approximately 17% smaller than fossil diesel. The obtained data also show that the heats of combustion depend on the methodology used for the biofuel production. Addition of biofuels to traditional diesel fuel results in a linear decreasing of the heat of combustion with the amount of the alternative fuel added to the diesel.  相似文献   

2.
F-T柴油在直喷式柴油机中燃烧与排放特性的研究   总被引:7,自引:1,他引:6  
煤通过Fischer-Tropsch (F-T)合成可得到十六烷值高、硫和芳香烃质量分数极低的F-T柴油。研究分析了未作改动的单缸直喷式柴油机燃用F-T柴油时的燃烧和排放特性。结果表明,与燃用0号柴油相比,燃用F-T柴油时的滞燃期平均缩短18.7%,预混燃烧放热峰值降低26.8%,扩散燃烧放热峰值较高,燃烧持续期相当。燃用F-T柴油时的最高燃烧压力略低,最大压力升高率显著下降,机械损失和燃烧噪音较小,燃油消耗率和热效率都得到显著改善。燃用F-T柴油可同时降低CO、HC、NOx和炭烟排放,其中NOx和炭烟分别平均降低16.7%和40.3%。研究表明,F-T柴油是柴油机良好的清洁代用燃料。  相似文献   

3.
Hou  Limin  Yu  Qingbo  Wang  Kun  Wang  Tuo  Yang  Fan  Zhang  Shuo 《Journal of Thermal Analysis and Calorimetry》2019,136(1):317-330

Depletion of non-renewable energy sources are at elevated manner due to the rapid growth of industrialization and transportation sector in last few decades and leads to further energy demand. Biodiesels especially second-generation fuels from non-edible oil resources are alternate sources for replacement of diesel fuel in CI engines due to their considerable environmental benefits. In the present work, non-edible feedstock of Calophyllum inophyllum seed oil (tamanu oil) is used for biodiesel production. Transesterification method is used for preparation of biodiesel in the existence of methanol with NaOH as catalyst. The copper nanoparticles are synthesized by electrochemical method, and it is characterized by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). XRD and SEM results confirm the presence of copper nanoparticle and size of around 30 nm. This paper aims to investigate the effects of the copper additive nanoparticles with biodiesel blends on the engine performance, combustion and emission characteristics of single-cylinder direct-injection diesel engine and compared that with diesel fuel. The results showed that the addition of nano-additives enhances brake thermal efficiency and reduces specific fuel consumption compared to biodiesel blends but slightly lower than diesel. Combustion characteristics also are enhanced by improved oxidation reaction inside the combustion chamber which resulted in higher heat release rate. The emissions of HC, NOx and O2 are significantly reduced for nano-additive blends compared to diesel but increased CO2 emission was observed. It is noticed that higher CO2 emission and substantial reduction of unused O2 emissions from engine fueled with nano-additive are evident for enhanced oxidation and better combustion. Energy and exergy analysis of the diesel engine is carried out to estimate the effect of using nanoparticle additive with biodiesel.

  相似文献   

4.

With the increasing depletion of fossil energy, the refuse-derived fuel (RDF) as an unavoidable by-product of human activities has been used as an alternative fuel in the precalciner cement kilns. Since the RDF combustion also brings the problems of NOx pollution, it is quite important to find ways to lower the NOx emission during RDF combustion in the precalciner. The pyrolysis characteristics and products of RDF were studied by TG-FTIR and Py-GC/MS. From TG-FITR and Py-GC/MS tests, various carboxylic acids and alkenes formed with NOx released at the RDF pyrolysis process at 200–550 °C. By simulating the temperature (700 °C, 800 °C and 900 °C) and O2 (12%, 14%, 16%, 18% and 21%) environment of the precalciner using a double furnaces reactor, the combustion processes and NOx formation characteristics of RDF combustion were studied. The results showed that the volatile-N was the dominant reactant source of fuel NOx during RDF combustion. The fuel-N conversion and NOx emission yield showed a continuous decreasing trend with temperature increasing from 700 to 900 °C. The fuel-N conversion and NOx emission yield showed a slight increasing trend with the oxygen concentration increase, and the optimum oxygen concentration for RDF combustion was 14%. In this study, the optimum temperature was 900 °C and oxygen concentration was 14% for de-NOx in the precalciner.

  相似文献   

5.
A high-pressure and temperature cyclohexane pyrolysis shock tube study was completed with the goal of extending the experimental cyclohexane pyrolysis data to pressures relevant to current and future combustors and to investigate whether ring contraction products observed in high-pressure, supercritical phase cyclohexane and cycloalkane pyrolysis experiments can form at matching, and higher, pressures in the gas phase. The experiments in the current work were completed over a range of 950–1650 K and at nominal pressures of 40, 100, and 200 bar. No alkylcyclopentanes, possible ring contraction products, were observed to form under the conditions of the current study. The production of methylenecyclopentane and 1,3-cyclopentadiene, and the other three cyclic species quantified: cyclohexene, benzene, and toluene, increased significantly with a substantial increase in the initial fuel concentration. Two sets of experimental data obtained at 200 bar were compared with a literature and laboratory-generated model. Both models had difficulty capturing the propadiene and propyne profiles, and the literature model significantly overestimated the benzene observed in the set of experiments completed with the more dilute fuel mixture. The literature model was able to better predict propadiene, propyne, and benzene product profiles in the 200 bar set of experiments, which used a higher concentration of fuel in the test gas. These results suggest that despite both cyclohexane and benzene being well-studied and important species in combustion chemistry, their reaction pathways and reaction rates would benefit from further refinement.  相似文献   

6.
In the context of better understanding pollutant formation from internal combustion engines, new experimental speciation data were obtained in a high-pressure jet-stirred reactor for the oxidation of three molecules, which are considered in surrogates of diesel fuel, n-heptane, ethylbenzene, and n-butylbenzene. These experiments were performed at pressures up to 10 bar, at temperatures ranging from 500 to 1 100 K, and for a residence time of 2 s. Based on results previously obtained close to the atmospheric pressure for the same molecules, the pressure effect on fuel conversion and product selectivity was discussed. In addition, for the three fuels, the experimental temperature dependence of species mole fractions was compared with simulations using recent literature models with generally a good agreement. For n-heptane, the obtained experimental data, at 10 bar for stoichiometric mixtures, included the temperature dependence of the mole fractions of the reactants and those of 21 products. Interestingly, the formation of species previously identified as C7 diones was found significantly enhanced at 10 bar compared with lower pressures. The oxidation of ethyl- and n-butylbenzenes was investigated at 10 bar for equivalence ratios of 0.5, 1, and 2. The obtained experimental data included the temperature dependence of the mole fractions of the reactants and those of 13 products for the C8 fuels and of 19 products for the C10 one. For ethylbenzene under stoichiometric conditions, the pressure dependence (from 1 to 10 bar) of species mole fraction was also recorded and compared with simulations with more deviations obtained than for temperature dependence. For both aromatic reactants, a flow rate analysis was used to discuss the main pressure influence on product selectivities.  相似文献   

7.
Due to current and future policy targets, and rapid technical developments, biofuel options are already available and in use in commercial applications. However, there is still doubt about which of the more promising alternatives will be widely accepted in future within the transportation sector. This includes aspects of biofuel properties and their effects on exhaust gas emissions and engine technology. This article addresses the status of current technology, reviews the progress of commercialisation of biofuel production, and gives an outline of its future development. Moreover, it provides an insight into the influence of biofuel composition on the internal combustion process and exhaust gas emissions. To assess biofuel sustainability, all aspects such as fuel production, fuel chemical composition, combustion behaviour, engine technology, and exhaust gas emissions have to be taken into account. Potential application fields and emerging challenges for measurement technology are identified in all these areas.  相似文献   

8.

Rising fuel costs and efforts for reducing greenhouse gases have led researchers to propose optimized models of combustion which have high efficiency and low emissions. Reactivity controlled compression ignition (RCCI) engines are attractive due to their high efficiency and low NOx and soot emissions over a wide range of operating conditions. In this study, methane and n-heptane are used as low and high reactive fuels, respectively, to create suitable fuel stratification within the cylinder. Modeling is carried out by AVL FIRE coupled with a chemical kinetics solver to investigate the effects of fuel ratio, initial temperature and equivalence ratio on the combustion performance and emission characteristics. Methane/n-heptane ratios are varied according to the energy ratio of each fuel while total input energy and total equivalence ratios are fixed. By increasing methane energy ratio from 65% to 85% in the constant intake temperature and pressure, the mixture Octane number increases, which would lead to an increase in ignition delay up to 5 crank angles. As a result, IMEP would be enhanced and also NOx emission decreases because of lower combustion temperature. By increasing intake temperature, the maximum in-cylinder pressure, heat release rate and NOx emission would increase significantly while soot emission decreases, and also ringing intensity increases up to 10%. On the other hand, increasing intake temperature reduces volumetric efficiency; as a result, IMEP is reduced by 11%. Also by increasing equivalence ratio from 0.35 to 0.55 in a constant energy ratio, noticeable growth in the maximum amount of pressure and temperature could be achieved; consequently, NOx emission would increase significantly, IMEP increases by 43%, and ISFC decreases by 30%. The results indicate that these parameters have significant effects on the heavy-duty RCCI engine performance and emissions.

  相似文献   

9.
The environmental degradation, combined with the continuous depletion of the world's fossil fuel reserves, has forced the search for alternative fuels. This study was performed to investigate the performance of novel biodiesels in the CI engine. The experiments were performed at three different compressions ratios (16:1, 17:1, 18:1) and four loading conditions (25%, 50%, 75%, 100%). Different types of fuels such as jatropha biodiesel (JB), roselle biodiesel (RB), and ternary biodiesel (TB) were prepared and analyzed. The thermal performance of different fuels was analyzed in terms of brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), and exhaust gas temperature (EGT). The emission characteristics such as CO2 emission, NOx emission, and smoke emission were analyzed for all types of fuels. The results of these fuels in the engine were compared with mineral diesel (MD). The BTE was increased with increasing compression ratios and loads for all types of fuels. The BSFC was increased with increasing compression ratios but decreased with increasing loads. The increase in emission of NOx was observed at higher compression ratios and loads. However, the CO2 emission was decreased at higher loads and lower compression ratio. The performance curves achieved with a 20% jatropha biodiesel blend showed results that were approximate to those obtained with pure MD. The comparative analysis between different fuels showed that JB exhibit higher thermal performance as compared to other biodiesels. Therefore, JB can be a better alternative to conventional fuel.  相似文献   

10.
The twenty-first century started with many downsizing applications. This important trend in the engine technology has been constantly developed. There are questions about limits and on the other hand new solutions in the face of new materials, tribological discovery, lubrication oils, turbo- or supercharging, new control electronic system of the engine run, higher accuracy in designing, etc. Some of parameters of thermodynamics of working cycle and thermal load according to the downsizing engine parameters were considered in this article. The downsizing impacts on fuel economy and emission were analysed, too. The investigations were carried out with own measured data (i.e. pressure inside inlet manifold, temperature of engine wall) as well as data from references (for example material properties) and at the end the simulations were done. The essential achievements of the work are (a) downsizing factor (DSF) was defined first time in this article (nobody before), (b) because of possibility of exceeding thermal load in piston (as an example engine part) the changes of DSF has to be restricted to almost 0.95 giving changes of 0.85 for base cylinder diameter and 0.90 ratio of base volume for stroke, (c) the main goal of downsizing to reduce CO2 emission was results of all tests but it show only 10% benefit, and (d) it is possible to optimise the downsizing technology. So, the next research work will be focused on changes of super- and turbocharging as well as lean mixture combustion for better optimisation of downsizing.  相似文献   

11.

As a clean and sustainable energy source, hydrogen is widely considered as an engine fuel by top researchers. In view of the fact that the uneven fuel mixture of diesel fuel deteriorated the combustion and emissions process, it is expected to adopt diesel and hydrogen dual-fuel combustion technology to optimize combustion and heat release of diesel engine. In this study, experiments are carried out on a diesel engine and the combustion characteristics of the engine with different hydrogen ratios (RH) are compared. It has been found that hydrogen addition is conducive to accelerate the heat release rate and improve the thermal efficiency. Specifically, compared with pure diesel conditions, the peak pressure increased by 7.7% and the cumulative heat release rate increased by 3.7% under the condition of RH of 20%. Moreover, although the effect on the ignition delay period is not clear, the higher RH brings about earlier heat release center and more cumulative heat release while enhancing the heat release of premixed combustion reducing the diffusion combustion and post-combustion.

  相似文献   

12.

The present work emphasis on to estimate the theoretical findings of energy and exergy analysis of biodiesel fueled with diesel on variable compression ratio engine at various combinations of fuel blend at different compression ratios. This study aims to identify the optimum engine settings based on compression ratio and biodiesel blends. The engine is operated with methyl esters of rubber seed oil and its 20, 40, 60 and 80% blends with diesel on volume basis. The compression ratio is varied from 18:1 to 22:1 at five compression ratios at 80% load in 3.5 kW, 1500 rpm, single cylinder water-cooled direct injection engine. The variables analyzed are energy and exergy potential of fuel input, shaft work, cooling water, maximum pressure, heat release rate, exergy destruction, brake-specific energy consumption, brake thermal efficiency, second law efficiency, entropy generation, exhaust gas temperature and various emissions. It is observed that the combination of CR 20, B20 and B40 at 80% load gives a better performance in thermodynamic analysis of methyl esters of rubber seed oil blended with diesel in VCR engine.

  相似文献   

13.
F-T柴油对电控高压共轨柴油机性能及排放影响的研究   总被引:2,自引:0,他引:2  
在满足国Ⅲ排放的现代高压共轨柴油机上,研究了掺烧不同比例F-T柴油混合燃料对发动机性能和排放的影响。结果表明,随着掺烧比例的加大,发动机的动力性略有下降,在外特性上,与燃烧国Ⅲ柴油相比,燃用F-T柴油时,扭矩最大下降2.2%,而燃油消耗率最高下降7.1%,有效热效率提高了4.5%。在十三工况的排放上,碳氢化合物(HC)、氮氧化物(NOx)、一氧化碳(CO)和颗粒(PM)的比排放量较国Ⅲ柴油均有明星下降,其中尤以燃用F-T柴油下降的幅度最大,PM降低了25.5%、NOx降低了11.7%、HC降低了39.3%、CO降低了33.9%。F-T柴油是柴油机的优良替代燃料。  相似文献   

14.
激光诱导炽光(LII)法是一种用于测量火焰中碳烟体积分数的光学测试方法. 本文介绍了LII 的基本原理以及LII 实现定量测量的常见标定方法, 建立了一套基于双色法-激光诱导炽光法(2C-LII)的用于柴油机缸内燃烧过程碳烟体积分数定量测量的测试系统, 该测试系统采用双成像原理, 可以实现多点标定和全视场范围内的碳烟体积分数测量. 在一台工作在1200 r·min-1、喷油量21 mg的光学单缸柴油机上, 研究了60、100 和140MPa三个不同喷油压力下, 缸内燃烧过程碳烟的分布情况, 结果表明, 碳烟自发光出现在燃烧放热率峰值之后, 且随着喷油压力提高, 碳烟发光持续期缩短, 碳烟发光强度降低. 测试区域内火焰中的碳烟体积分数范围约为0-50×10-6. 不同喷油压力下, 碳烟生成初期、碳烟峰值和碳烟氧化三个阶段内平均碳烟体积分数的范围分别是: 5×10-6-9×10-6, 15×10-6-20×10-6和14×10-6-16×10-6. 喷油压力提高后火焰中的碳烟分布区域面积增大, 平均碳烟体积分数减小, 碳烟体积分数的空间分布趋于均匀.  相似文献   

15.

This paper investigates the effect of some biofuels on thermal balance and performance characteristics of a single-cylinder, four-stroke SI internal combustion engine. In this study, total and instantaneous energy balance of an air-cooled, small-scale engine using various biofuels is investigated. An experimental study is carried out on gasoline engine to validate the numerical calculations. Bio-alternative fuels which include methanol, ethanol and 2-ethanol–gasoline-blended fuels consisting of E85, E15 are examined numerically. Results indicate that methanol is the most effective fuel in aspect of power generation. Ethanol, E85, E15 and gasoline are placed in next positions, respectively. Break specific fuel consumption shows totally reversed trend. It is evaluated that by increasing engine speed, heat transfer to brake power ratio decreases and lower percentage of energy in form of heat transfer is lost. The least heat transfer to brake power ratio among studied fuel is related to methanol which approves it as the most efficient biofuel. Based on instantaneous in-cylinder energy balance analysis, at the end of combustion and during expansion stroke, instantaneous brake work of fuels outpaces each other at around 40° crank angle aTDC.

  相似文献   

16.
Diode-laser absorption spectroscopy has been applied to a swirl-stabilized turbulent combustor to detect high frequency combustion oscillation and combustion state related to combustion noise. Two diode-laser absorption spectroscopy techniques of scanned-wavelength method and fixed-wavelength method are adopted. In the scanned-wavelength method, fluctuations of temperature and H2O mole fraction up to 1 kHz are detected. Two dominant peak frequencies of power spectra of these fluctuations, which are about 125 Hz and 140 Hz, coincide with those of pressure fluctuation in the combustor. In the case of control by secondary fuel injection, the energy at peak frequency of temperature and H2O mole fraction decreases in accordance with noise reduction. Similar to the combustion noise, temperature fluctuation shows a minimal value at the appropriate frequency of secondary fuel injection. By analysing transmitted signals, the fixed-wavelength method provides power spectra similar to those obtained by the scanned-wavelength method. The advantage of the fixed-wavelength method is capability of detection of high frequency combustion oscillation more than 1 kHz. These results prove that the diode-laser absorption spectroscopy has great applicability as sensors for the combustion measurement of thermoacoustic oscillating flames and active control of turbulent combustion.  相似文献   

17.
《Fluid Phase Equilibria》2005,238(2):210-219
Data are reported on the phase behavior of hydrocarbon and semifluoroinated octyl ester benzoate dimers in CO2 to temperatures of 100 °C and pressures of 1 600 bar. The experimental data at 75 °C demonstrate that the non-fluorinated head-to-head (H–H) dimer dissolves in CO2 at ∼400 bar lower pressures than the non-fluorinated tail-to-tail (T–T) dimer. Even though partially fluorinating the octyl tails of the H–H and T–T dimers renders them soluble in CO2 at pressures near 200 bar, it still takes ∼40 bar more pressure to dissolve the fluorinated T–T dimer as compared to the H–H dimer. The difference in pressures needed to dissolve these dimers is attributed to steric constraints on the coplanarity of the benzene rings imposed by the H–H regiochemistry that do not exist with T–T dimers. Semi-empirical quantum mechanics calculations suggest that the H–H dimer has a twisted, non-coplanar conformation due to the steric effect of the octyl ester groups while the T–T dimer has a less twisted conformation. Steric hindrance in the H–H dimer reduces considerably resonance or conjugation between the π electrons of the aromatic groups which also reduces the dipole moments of the H–H dimers compared to those of the T–T dimers.  相似文献   

18.
双燃料压燃(RCCI)是一种很有前景的发动机新型燃烧方式,能在小负荷到中高负荷范围内实现发动机高效清洁燃烧,为了将RCCI拓展到更高负荷,需要对其缸内燃油分层和燃烧过程开展更深入研究。本文在一台双燃料光学发动机上采用燃油-示踪剂平面激光诱导荧光法(PLIF),对RCCI着火前缸内燃油分层进行定量测量,选用甲苯作为示踪剂,利用266 nm脉冲激光激发甲苯荧光,发动机转速1200 r·min-1,平均指示压力6.9×105 Pa,气道喷射异辛烷,缸内在上止点前10°喷射正庚烷。采用燃油-气体绝热混合假设,对PLIF测量结果进行温度不均匀性修正,以上止点后5°曲轴转角下的测量结果为例,不修正相比修正测试区域内的最大当量比高估15%。根据实验结果,利用Chemkin软件分析了活性、浓度和温度分层对燃烧滞燃期的影响,结果显示燃料活性分层和浓度分层共同决定RCCI的着火滞燃期,其中活性分层影响要大于浓度分层,而温度分层对着火滞燃期影响很小。RCCI燃烧过程自发光的高速成像结果表明,着火过程首先出现在燃烧室边缘的高活性区域,随后火焰向燃烧室中心处的低活性区域发展,碳烟辐射光图像显示碳烟主要形成于燃烧室边缘的高活性区域。  相似文献   

19.
In this study, microwave-induced combustion (MIC) of extra-heavy crude oil is proposed for further chlorine and sulfur determination by inductively coupled plasma optical emission spectrometry (ICP OES). Combustion was carried out under oxygen pressure (20 bar) in quartz vessels using ammonium nitrate (50 µl of 6 mol l− 1 solution) as ignition aid. Samples were wrapped with polyethylene film and placed on a quartz holder positioned inside the quartz vessels. The need for an additional reflux step after combustion and the type and concentration of absorbing solution (water, 0.02 to 0.9 mmol l− 1 H2O2, 10 to 100 mmol l− 1 (NH4)2CO3 or 0.1 to 14 mol l− 1 HNO3) were studied. The influence of sample mass, O2 pressure and maximum pressure attained during the combustion process were investigated. Recoveries from 92 to 102% were obtained for Cl and S for all absorbing solutions. For comparison, Cl and S determination was also performed by ion chromatography (IC) using 25 mmol l− 1 (NH4)2CO3 as absorbing solution. Using MIC with a reflux step the agreement was better than 95% for certified reference materials of similar composition (crude oil, petroleum coke, coal and residual fuel oil). Microwave-assisted digestion and water extraction in high pressure closed vessels were also evaluated. Using these procedures the maximum recoveries were 30 and 98% for Cl and S, respectively, using microwave-assisted digestion and 70% for Cl and less than 1% for S by water extraction procedure. Limits of detection by ICP OES were 12 and 5 µg g− 1 for Cl and S, respectively, and the corresponding values by IC were 1.2 and 8 µg g− 1. Using MIC it was possible to digest simultaneously up to eight samples resulting in a solution suitable for the determination of both analytes with a single combustion step.  相似文献   

20.
Biofuels, such as bio‐ethanol, bio‐butanol, and biodiesel, are of increasing interest as alternatives to petroleum‐based transportation fuels because they offer the long‐term promise of fuel‐source regenerability and reduced climatic impact. Current discussions emphasize the processes to make such alternative fuels and fuel additives, the compatibility of these substances with current fuel‐delivery infrastructure and engine performance, and the competition between biofuel and food production. However, the combustion chemistry of the compounds that constitute typical biofuels, including alcohols, ethers, and esters, has not received similar public attention. Herein we highlight some characteristic aspects of the chemical pathways in the combustion of prototypical representatives of potential biofuels. The discussion focuses on the decomposition and oxidation mechanisms and the formation of undesired, harmful, or toxic emissions, with an emphasis on transportation fuels. New insights into the vastly diverse and complex chemical reaction networks of biofuel combustion are enabled by recent experimental investigations and complementary combustion modeling. Understanding key elements of this chemistry is an important step towards the intelligent selection of next‐generation alternative fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号