首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Whitham?CBroer?CKaup (WBK) equations describing the propagation of shallow-water waves, with a variable transformation, are transformed into a generalized Ablowitz?CKaup?CNewell?CSegur system, the bilinear forms of which are obtained via the rational transformations. Employing the matrix extension and symbolic computation, we derive types of solutions of the WBK equations through the selection of different canonical matrices, including solitons, rational solutions, and complexitons. Furthermore, dynamic properties of the solutions are discussed graphically and a novel phenomenon is observed, i.e., the coexistence of the elastic?Cinelastic interactions without disturbing each other.  相似文献   

2.
Tao Xu  Yi Zhang 《Nonlinear dynamics》2013,73(1-2):485-498
With the aim of exploring whether the (1+1)-dimensional coupled nonlinear evolution equations admit abundant soliton interactions, like the cases in the Kadomtsev–Petviashvili II equation, we in this paper study the double Wronskian solutions to the Whitham–Broer–Kaup (WBK) system. We give the parametric condition for two double Wronskians to generate the non-singular, non-trivial and irreducible soliton solutions. Via the asymptotic analysis of two double Wronskians, we show that the soliton solutions of the WBK system is in general linearly combined of fully resonant (M,N)- and (M?1,N+1)-soliton configurations. It turns out that the WBK system can exhibit various complex soliton structures which are different pairwise combinations of elastic, confluent and divergent interactions. From a combinatorial viewpoint, we also explain that the asymptotic solitons of a [(M,N),(M?1,N+1)]-soliton solution are identified by a pair of Grassmannian permutations.  相似文献   

3.
Fan  Lulu  Bao  Taogetusang 《Nonlinear dynamics》2022,109(4):3091-3100
Nonlinear Dynamics - In this paper, the Painlevé integrability and superposition wave solutions of Whitham–Broer–Kaup (WBK) equations are studied, which can help us increase the...  相似文献   

4.
A simple characteristic equation solution strategy for deriving the fundamental analytical solutions of 3D isotropic elasticity is proposed. By calculating the determinant of the differential operator matrix obtained from the governing equations of 3D elasticity, the characteristic equation which the characteristic general solution vectors must satisfy is established. Then, by substitution of the characteristic general solution vectors, which satisfy various reduced characteristic equations, into various reduced adjoint matrices of the differential operator matrix, the corresponding fundamental analytical solutions for isotropic 3D elasticity, including Boussinesq-Galerkin (B-G) solutions, modified Papkovich-Neuber solutions proposed by Min-zhong WANG (P-N-W), and quasi HU Hai-chang solutions, can be obtained. Furthermore, the independence characters of various fundamental solutions in polynomial form are also discussed in detail. These works provide a basis for constructing complete and independent analytical trial functions used in numerical methods.  相似文献   

5.
All the possible traveling wave solutions of Whitham-Broer-Kaup (WBK) equation are investigated in the present paper. By employing phase plane analysis, transition boundaries are derived to divide the parameter space into several regions associated with different types of phase portraits corresponding to different forms of wave solutions. All the exact expressions of bounded wave solutions are obtained as well as their existence conditions. The mechanism of bifurcation between different waves with varying Hamiltonian value has been revealed. It is pointed out that as the periods of two coexisted periodic waves tend to infinity, they may evolve to two solitary waves. Furthermore, when their trajectories pass through the common saddle point, the two solitary waves may merge into a periodic wave, and its amplitude is nearly equal to the sum of the amplitudes of the two solitary wave solutions.  相似文献   

6.
IntroductionWiththerapiddevelopmentofnonlinearscience,Manyphenomenainphysics,mechanics,chemistryandbiologyetc.canbedescribedsimplyandexactlybythemathematicalmodel_nonlinearequations[1- 7].Onthecontrary ,inordertostudythesephenomenaquantitatively .Itisveryim…  相似文献   

7.
IntroductionWiththerapiddevelopmentofscienceandtechnology ,thestudykernelofmodernscienceischangedfromlineartononlinearstepbystep .Manynonlinearscienceproblemscansimplyandexactlybedescribedbyusingthemathematicalmodelofnonlinearequation .Uptonow ,manyimpor…  相似文献   

8.
In this paper, a generalized auxiliary equation method with the aid of the computer symbolic computation system Maple is proposed to construct more exact solutions of nonlinear evolution equations, namely, the higher-order nonlinear Schrödinger equation, the Whitham–Broer–Kaup system, and the generalized Zakharov equations. As a result, some new types of exact travelling wave solutions are obtained, including soliton-like solutions, trigonometric function solutions, exponential solutions, and rational solutions. The method is straightforward and concise, and its applications are promising.  相似文献   

9.
Some nonclassical potential symmetry generators and group-invariant solutions of heat equation and wave equation were determined. It is shown that some new explicit solutions of partial differential equations in conserved form can be constructed by using the nonclassical potential symmetry generators which are derived from their adjoint system. These explicit solutions cannot be obtained by using the Lie or Lie-Backlund symmetry group generators of differential equations.  相似文献   

10.
The observation that the hyperbolic shallow water equations and the Green–Naghdi equations in Lagrangian coordinates have the form of an Euler–Lagrange equation with a natural Lagrangian allows us to apply Noether's theorem for constructing conservation laws for these equations. In this study the complete group analysis of these equations is given: admitted Lie groups of point and contact transformations, classification of the point symmetries and all invariant solutions are studied. For the hyperbolic shallow water equations new conservation laws which have no analog in Eulerian coordinates are obtained. Using Noether's theorem a new conservation law of the Green–Naghdi equations is found. The dependence of solutions on the parameter is illustrated by self-similar solutions which are invariant solutions of both models.  相似文献   

11.
Analytical solutions for some nonlinear evolution equations   总被引:1,自引:0,他引:1  
IntroductionItiswell_knownthatmanyimportantdynamicsprocessescanbedescribedbyspecificnonlinearpartialdifferentialequations .Whenanonlinearpartialdifferentialequationisusedtodescribeaphysicalparameterthatshowssomekindsofpropagationoraggregationproperties,oneofthemostimportantphysicalmotivationsistosolvethepartialdifferentialequationwithacertaintypeoftravellingwavesolution .Inthepastseveraldecades,therehavebeenmanyattemptsinthisfieldbothbymathematiciansandphysicists[1]- [16 ],however,duetothecomp…  相似文献   

12.
A number of control problems for mechanical systems with feedback are reduced to a matrix algebraic Riccati equation. The exact solutions of matrix algebraic Riccati equations with singularities are presented. These singularities do not permit the use of standard solution procedures. Asymptotic solutions of these equations are found in the neighborhood of the singular points. These results can be used as test examples in developing new solution algorithms for matrix algebraic Riccati equations __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 2, pp. 113–120, February 2006.  相似文献   

13.
This paper studies the dynamic behaviors of some exact traveling wave solutions to the generalized Zakharov equation and the Ginzburg-Landau equation. The effects of the behaviors on the parameters of the systems are also studied by using a dynamical system method. Six exact explicit parametric representations of the traveling wave solutions to the two equations are given.  相似文献   

14.
15.
In this paper, a new auxiliary equation method is used to find exact travelling wave solutions to the (1+1)-dimensional KdV equation. Some exact travelling wave solu- tions with parameters have been obtained, which cover the existing solutions. Compared to other methods, the presented method is more direct, more concise, more effective, and easier for calculations. In addition, it can be used to solve other nonlinear evolution equations in mathematical physics.  相似文献   

16.
Shallow water waves and a host of long wave phenomena are commonly investigated by various models of nonlinear evolution equations. Examples include the Korteweg–de Vries, the Camassa–Holm, and the Whitham–Broer–Kaup (WBK) equations. Here a generalized WBK system is studied via the multi-linear variable separation approach. A special class of wave profiles with discontinuous derivatives (“peakons”) is developed. Peakons of various features, e.g. periodic, pulsating or fractal, are investigated and interactions of such entities are studied. The project supported by the National Natural Science Foundation of China (10475055, 10547124 and 90503006), and the Hong Kong Research Grant Council Contract HKU 7123/05E.  相似文献   

17.
In this paper, we investigate the steady momentum and heat transfer of a viscous fluid flow over a stretching/shrinking sheet. Exact solutions are presented for the Navier-Stokes equations. The new solutions provide a more general formulation including the linearly stretching and shrinking wall problems as well as the asymptotic suction velocity profiles over a moving plate. Interesting non-linear phenomena are observed in the current results including both exponentially decaying solution and algebraically decaying solution, multiple solutions with infinite number of solutions for the flow field, and velocity overshoot. The energy equation ignoring viscous dissipation is solved exactly and the effects of the mass transfer parameter, the Prandtl number, and the wall stretching/shrinking strength on the temperature profiles and wall heat flux are also presented and discussed. The exact solution of this general flow configuration is a rare case for the Navier-Stokes equation.  相似文献   

18.
A Simple Fast Method in Finding Particular Solutions of Some Nonlinear PDE   总被引:4,自引:0,他引:4  
1 ATrialFunctionandaRoutinetoFindAnalyticalSolutionofTwoTypesofNonlinearPDE  Wetreatthenonlinearevolutionequation ,whichisformedbyaddinghighorderderivativetermsandnonlineartermstotheBurgersequation u t u u x … up u xq α1 u x … αn nu xn =0 ,( 1)whichp ,q ,nandαi(i =1,2…  相似文献   

19.
Based on elasticity theory, various two-dimensional (2D) equations and solutions for extensional deformation have been deduced systematically and directly from the three-dimensional (3D) theory of thick rectangular plates by using the Papkovich–Neuber solution and the Lur’e method without ad hoc assumptions. These equations and solutions can be used to construct a refined theory of thick plates for extensional deformation. It is shown that the displacements and stresses of the plate can be represented by the displacements and transverse normal strain of the midplane. In the case of homogeneous boundary conditions, the exact solutions for the plate are derived, and the exact equations consist of three governing differential equations: the biharmonic equation, the shear equation, and the transcendental equation. With the present theory a solution of these can satisfy all the fundamental equations of 3D elasticity. Moreover, the refined theory of thick plate for bending deformation constructed by Cheng is improved, and some physical or mathematical explanations and proof are provided to support our justification. It is important to note that the refined theory is consistent with the decomposition theorem by Gregory. In the case of nonhomogeneous boundary conditions, the approximate governing differential equations and solutions for the plate are accurate up to the second-order terms with respect to plate thickness. The correctness of the stress assumptions in the classic plane-stress problems is revised. In an example it is shown that the exact or accurate solutions may be obtained by applying the refined theory deduced herein.  相似文献   

20.
Newton equations are dynamical systems on the space of fields. The solutions of a given equation which are curves of characteristic fields for its force are planar and have constant angular momentum. Separable solutions are characteristic with angular momentum equal to zero. A Newton equation is separable if and only if its characteristic equation is homogeneous. Separable equations correspond to invariants of homogeneous ordinary differential equations, and those associated with a given homogenous equation correspond to its generalized dilation symmetries. A Newton equation is compatible with the characteristic condition if and only if its characteristic equation is linear. Such equations correspond to invariants of linear ordinary differential equations. Those associated with a given linear equation correspond to the central force problems on its solution space. Regardless of compatibility, any Newton equation with a plane of characteristic fields has non-separable characteristic solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号